Arctic Climate and Weather Extremes: Polynya Events in the Last Ice Area (Wandel Sea)

Axel Schweiger
Mike Steele, Kent Moore, Jinlun Zhang, Kristin Laidre, Ben Cohen, Qinghua Ding
1) University of Washington
2) University of Toronto
3) University of California, St. Barbara

Last Ice Area (WWF)
Wandel Sea
Two Polynyas: Feb 2018, Aug 2020

Wandel Sea

Feb 25 2018

Aug 15 2020

AMSR-2 Artist Ice Concentration [%]
MOSAiC route to reposition to the North Pole in August 2020

...via the Wandel Sea!

August, 2020

Sea Ice Concentration [%]

AMSR-2 (ARTIST Sea Ice, U of Bremen)
Wandel Sea Polynya Events: Summary of two papers, plus some new results

See also:

V. Ludwig et al. (The Cryos., 2019): 2018 event (hi res sat, NAOSIM model)
Y. Lee et al. (The Cryos. Discussion, in review): Winter Polynyas (RASM model)
Moore et al. 2021 (GRL) Spring 2020 Polynya north of Ellesmere Island
Science Questions:

• Historical context. How special where they?
• What caused these events? Mechanisms
• What’s the role of climate change (attribution)?
• What is likely to happen in the future?
The Winter Wandel Polynya: Feb 2018

February Ice Concentration [%]

PIOMAS CNTRL: Ice-Ocean model forced with NCEP/NCAR, no Data Assimilation after January 1, 2018

Moore et al. (GRL, 2018)
Winter Minimum (Dec-March) Ice Concentration

Data: NSIDC CDR
The long view: 1901-2020

PIOMAS-20C: model-based reconstruction using ERA-20C atmosphere data to force ice-ocean model (HadISST 2 daily ice concentrations assimilated)
(see Schweiger et al. 2019 Journal of Climate)

PIOMAS: Standard PIOMAS model
2018 February Event was caused by very strong southerly winds.

Meridional Wind Speed at Station Nord (Moore et al. 2018). Dashed/dotted lines are one and two sigma of 1961-2017 climatology.

The strong wind anomaly that created the Polynya was associated with a strong Stratospheric Warming Event in Early February.

Hypothesis: Thin Ice made sea ice more susceptible to deformation and allowed Polynya formation

PIOMAS MODEL (SI1979) with:
- 1979 initial conditions (ice thickness/concentrations)
- 1979 thermal forcing (radiation/temperature)
- 2018 Wind Forcing

CNTRL: (Historical Forcing/no DA) Thick and Cold but 2018 Winds

Result: Polynya would have occurred without thinning ice or warming (but size might have been a bit smaller)

Note: Lee et al. (TCD). Finds similar results with RASM (coupled) model
Summer 2020

Summery Event: August 2020

AMSR-2 (ARTIST Sea Ice, U of Bremen)

But the ice was thick in the spring of 2020?

Especially puzzling, given relatively thick springtime ice!
August 2020 Polynya: 41 year context

Polynya

2020 was lowest
...but other years were also low!

Aug. min. sea ice conc. (%)

Minimum Ice Concentration for each year

SMMR/SSMI/SSMIS (NOAA/NASA CDR, NSIDC)

Feb 2018
Why was August 2020 so low: Examining Ice Mass Budget

Dynamics vs Thermodynamics

Modeled ice thickness Δ partitioned as:

$$\frac{\Delta h_{\text{ice}}}{\Delta t} = F_{\text{adv}(\text{ection})} + F_{\text{prod}(\text{uction})}$$

$F_{\text{adv}} = $ thickness flux convergence
(>0 means thickening)

$F_{\text{prod}} = $ net growth – melt
(>0 means thickening)
Summer (JJA) Advection and Production Anomalies

Dynamics vs Thermodynamics

Data from PIOMAS model

Summer 2020:
• Large divergence
• Large net melt

Strong Advection events earlier: 2020 both went downL
Advection

Dynamics vs Thermodynamics

\[\frac{\Delta h_{\text{ice}}}{\Delta t} = F_{\text{adv}} + F_{\text{prod}} \]

Big, strong high pressure cell → “giant Beaufort High”

Mallett et al. (Nature Comm. Earth & Environ, 2021)
Moore et al. (Nature Comm. Earth & Environ., 2021)

Lots of divergence out of the Wandel Sea

Summer 2020 PIOMAS ice motion
Dynamics vs Thermodynamics

\[\frac{\Delta h_{\text{ice}}}{\Delta t} = F_{\text{adv}} + F_{\text{prod}} \]

More thin ice in recent years

Stored ocean heat is mixed upward

Bottom melt

High surface stress events

F_{\text{ocean-ice}}
Ocean Heat Melts Ice

Stored ocean heat is mixed upward

Decrease in subsurface ocean heat (NSTM = Near-Surface Temp. Max.)

high surface stress event

F_{ocean-ice}
Advection has the stronger impact on Ice Thickness
Q: What would have happened if Summer 2020 started with ice-ocean conditions

From another year...

Testing the contribution “long-term ice thinning”:
The role of June 1, 2020 ice-ocean conditions (climate change)

INIT Experiment:
- June 1 ice-ocean conditions from June 1, 1979, 1980, … 2019
- 2020 Atmospheric Forcings

Historical Simulation
(2020 initial, 2020 Forcing)

- low SIC from the start
- not much change (relative to ensemble) over the summer
The role of summer 2020 atmos. Forcing (weather)

Q: What if 2020 had different “weather”?

Experiment (Atmos)
- Atmos. forcing from summer 1979, 1980, etc.
- June 1, 2020 ice-ocean conditions

Assumption: This is the weather/internal contribution

SIC moves outside ensemble spread in late summer
June 1 conditions vs. summer atmos. forcing

SIC at low end of ensemble starting in *Early* Summer

SIC Moves to low end of ensemble in *Late* Summer

Climate Change Contribution

~20%

Weather Contribution

~80%
June 1 conditions vs. summer atmos. forcing

20% June 1 vs. 80% atmos. → 2020 SIC min. (mid-August)

climate change signal (i.e., ice thinning)

~ NYC flooding from Swain et al. (One Earth, 2020)

Superstorm Sandy October, 2012
Wandel Sea Ice Concentration: Replication with a fully coupled Global Model.

Satellite Observed Ice Conc.
NCAR CESM Model in “replay mode” nudged with reanalysis (ERA-5) winds north of 60N
(Ding et al. Journal of Climate in review)

Note: Monthly Data. Y-axis compressed!
What will happen in the future: winter

How do we generate daily ice information at suitable resolution:
- **GFDL-ESM4** IPCC AR6 historical + ssp585 atmosphere forcing for PIOMAS-like model
- **CNRM-CM6-1-HR** IPCC AR6 historical + ssp585 atmosphere forcing for PIOMAS-like model
- Some calibration of forcing to ERA-5 reanalysis
- Model tuning

Result: Winter event (Feb 2018) was a really “out of the park” event. Not likely to be seen before 2070 (model caveats apply)
What will happen in the future: summer

Result:
- Likelihood of 2020-like summer events will increase over the next 50 years but will remain rare through 2050
- Model differences/calibration over historical period make interpretation difficult
Summary

• Both Polynya events were primarily wind driven
• 2018 winter event was an extreme stochastic event with climate change playing no clear role
• Climate change, via thinning sea ice, is responsible for about 20% of the 2020 summer event. Weather accounts for about 80%.
• Winter events like 2018 will remain unlikely through 2070
• Summer events –like 2020- will remain rare but will become more likely over the next 30 years or so.
• Sea ice thickness distribution is important (mean thickness alone doesn’t tell the story)

Future work/Recommendations/Thoughts:
- Need more, better calibrated climate model simulations for future (daily output, more scenarios, not just ssp585). Nudged (replay simulations)
- 42-year observed record is still relatively short for extreme events. Improved long term 150+ year reconstructions would be helpful. Resolution, algorithms relevant for smaller scale events.
- Attribution likely model sensitive. Replication is needed.
Thank You
$\Delta h_{\text{ice}} / \Delta t = F_{\text{adv}} + F_{\text{prod}}$

Dynamics vs Thermodynamics

More thin ice in recent years

Stored ocean heat is mixed upward
C6H : 4.3, GFLD-ESM4: 2.7