Seasonal to decadal climate prediction: filling the gap between weather forecasts and climate projections **Doug Smith** Walter Orr Roberts memorial lecture, 9th June 2015 - Motivation - Practical issues - What can we predict? - What is the forecast? ### Improved weather forecasts - Weather forecasts much improved over last 30 years - 4 days ahead now as accurate as 1 day ahead in 1980 - BUT fundamental limits (weeks) due to chaotic atmosphere Can only forecast probabilities More extreme weather events ### Greenhouse gases #### Want to predict variations and trend - External forcing: greenhouse gases, aerosols, volcanoes, solar - Natural internal variability need to start predictions from the current state of the climate system - Climate varies a lot around the trend! #### El Niño Southern Oscillation (ENSO) (a) Non-El Niño conditions (b) El Niño Conditions ### Sahel drought 1980s Climate model forced by observed SST simulates Sahel rainfall variations. Giannini et al., Science, 2003 Observed rainfall trend, 1950-2000 Held *et al.*, *PNAS*, 2005 ### US dust bowl 1930s Dust Storm, Oklahoma, 1936 Climate model forced by observed SST simulates US great plains rainfall variations. Schubert et al., Science, 2004 ## Indian monsoon rainfall Year-to-year changes difficult to simulate. Modeled (black) and Observed (red) mm/day But decade-to-decade potentially predictable GIVEN ACCURATE OCEAN PREDICTIONS Kucharski et al., Climate Dynamics, 2008 ## Model simulations of hurricane frequency - 50 km resolution (GFDL model) - Forced by observed SST (Zhao et al. 2009) #### North Atlantic variability (Zhang and Delworth 2006; also Knight et al 2006 t al 2014) #### Atlantic ocean circulation Many idealised experiments suggest that North Atlantic ocean currents are potentially predictable on decadal timescales - Motivation - Practical issues - What can we predict? - What is the forecast? #### Hindcasts to assess skill Ensembles to sample uncertainties: - Uncertainties in the initial conditions - Model errors Perform historical tests ("retrospective forecasts" or "hindcasts" to assess likely skill and correct biases ### Models are imperfect! ## Sub-surface ocean observations - Need historical tests to assess likely skill of forecasts - Far fewer sub-surface ocean observations in the past - Could forecasts be more accurate than hindcasts? - Motivation - Practical issues - What can we predict? - What is the forecast? ### Seasonal forecast skill Dec-Feb (DJF, months 2-4) - High skill in tropics - Much lower for mid-latitude land (Europe and USA!) - Limited skill for precipitation © Crown copyright Met Office Kim et al., 2012 ### **Tropical Rains - seasonal** ### El Niño minus La Niña composite #### The Polar Vortex When price marker profragration and parameters are a second and a second a The typical polar vortex configuration in November 2013. ...A wavy polar vortex on January 5, 2014. - Winter in USA and Europe depends on the wind direction - Influenced by the Polar Vortex - Sometimes breaks down → wavy - Cold northerly winds e.g. 2014 ## Atlantic winter climate: the North Atlantic Oscillation (NAO) ## 2012: capability for predicting NAO is very low Skill (correlation) for predicting DJF sea level pressure starting on 1st November Time series of observed (circles) and seasonal forecast (solid line) of the NAO ## 2014: capability for predicting NAO is high! Skill (correlation) for predicting DJF sea level pressure starting on 1st November Time series of observed (black) and seasonal forecasts (orange) of the NAO New model is 10 times more expensive But now very skilful for European winters! ### Modelling the climate - Split the world into boxes - For each box, ensure fundamental laws of physics are satisfied: - Conservation of mass, momentum and energy - Small scale processes (e.g. Clouds) must be parameterised - The smaller the boxes the higher the accuracy - ...but more expensive (need large supercomputers) **Higher resolution** ### The next 5 years - Skilful almost everywhere (positive correlations) - Mostly due to external forcing - Initialisation gives improved skill mainly in North Atlantic and tropical Pacific (Smith et al. 2010) ### Case study: sub-polar gyre Predictions of sub-polar 1990s gyre warming Impacts: rainfall #### Impacts: hurricanes • Low skill in general, but some impacts captured over land for specific events - Motivation - Practical issues - What can we predict? - What is the forecast? #### El Niño forecast #### What next? #### Observed Atlantic overturning circulation #### Decadal forecasts of Atlantic temperature - Atlantic predicted to cool... - ...in response to weakening of Atlantic overturning - Not a reversal (yet), but impacts associated with warm Atlantic less likely: - > cold winters and wet summers in Europe less likely - ➤ fewer hurricanes than recent peaks - > reduced Sahel rainfall - ➤ reduced risk of drought in SW USA • Smeed et al, 2013; Hermanson et al 2014 #### North Atlantic variability (Zhang and Delworth 2006; also Knight et al 2006 t al 2014) - Many people are vulnerable to changes in climate over the coming seasons to decades - There are good physical reasons why we may be able to predict some aspects of climate on these timescales - ...though there will be uncertainties that need to be carefully communicated! - This is a new and rapidly developing area - Much recent progress... - ...but also many issues still to overcome **Hadley Centre**