Chemistry for decadal predictions

Jean-François Lamarque NCAR

Importance of chemistry

- Climate forcing
 - Direct radiative forcing: ozone and methane
 - Aerosol indirect effects
- Air quality
 - Ozone and carbon monoxide
 - ➢ PM1, PM2.5
- Impact on vegetation
 - > Ozone poisoning
 - Nitrogen deposition

Impact of climate on chemistry

- Change in water vapor: link with OH
- Change in temperature: different reaction rates
- Change in surface temperature: biogenic emissions
- Change in precipitation: lifetime of soluble species
- Change in stratospheric circulation: STE
- Change in meteorological conditions: heat waves

Summer surface ozone

Stratospheric ozone and

Simulation with CAM3

2008

How much chemistry is needed?

• Benchmarking for air quality questions

Gas-phase tropospheric chemistry only ≻Full mechanism: 79 species ≻Intermediate mechanism: 39 species

 High-resolution simulations (0.5°) for Mexico City and comparison with observations

Air quality: Comparison with aircraft observations

2. CO is will captured by all.

Air quality: Comparison with Mexico City surface observations

Predictability of chemistry

- Decadal variability of tropospheric chemistry is strongly constrained by changes in emissions
- Except for hange in OH
 - ➢Occurrence of heat waves
 - ➤Wildfires
 - ➤Change in circulation pattern
- Challengesasonable methane lifetime
 Reasonable emissions

Proposal for chemistry

- Emissions consistent with RCPs
- Tropospheric (and stratospheric) chemistry for offline simulations (long-term IPCC simulations)
- Tropospheric chemistry for short-term simulations
- Aerosols
- Enough simulations to track tails of PDF
- Enough simulations to identify the role of variations in emissions

Requirements

Variable	Units	Spatial scale	
		Concentrations	Regional and
			sectoral
			emissions
Greenhouse gases			
CO_2 (fossil fuel,	ppm and Pg/yr	Global average	Sum
industrial, land use			
change)			
CH ₄	ppb and Tg/yr	Global average	Grid ¹
N ₂ O	ppb and Tg/yr	Global average	Sum
HFCs ²	ppb and Tg/yr	Global average	Sum
PFCs ²	ppb and Tg/yr	Global average	Sum
CFCs ²	ppb and Tg/yr	Global average	Sum
SF ₆	ppb and Tg/yr	Global average	Sum
<i>Aerosols</i> ²			
Sulfur (SO_2)	Tg/yr	Generated by CM	Grid
		community ³	
Black Carbon (BC)	Tg/yr	Generated by CM	Grid
		community ³	
Organic Carbon (OC)	Tg/yr	Generated by CM	Grid
		community ³	
Chemically active gases			
СО	Tg/yr	Generated by CM	Grid
		community ³	
NO _x	Tg/yr	Generated by CM	Grid
		community ³	
VOCs ²	Tg/yr	Generated by CM	Grid
		community ³	
NH ₃	Tg/yr	Generated by CM	Grid
-		community ³	

Grid is 0.5°

RETRO y2000 Anth NOx (Tg/yr) Total: 90.02 Tg/yr

Process

- Workshop in May with representatives from global emission inventories and IAMs
- Define method (regional and sectoral analysis of existing inventories, including regional) to select (or build) inventory
- Harmonization (with past and future) emissions will be made with 2000 HTAP dataset

From D. Stevenson

Expected outcome (October 2008)

- 2008)
 Gridded (0.5°) monthly emissions 1850-2300 (every 10 years) for anthropogenic (including ODSs, biomass burning and ships/aircraft) and natural emissions consistent with the scenarios
- VOC speciation will follow the RETRO procedure
- Much larger biomass burning emissions and black carbon emissions late 1800s-early 1900s
- Many of the natural emissions will be kept constant (not biogenic VOCs)

After the emissions are available

- Emissions will be centralized and publicly distributed
- Testing of emissions will table place in the latter part of the year to identify major issues
- Additional emission datasets will become available from IAMs to study the sensitivity of chemical composition to the trajectory used in the scenario

Proposal for chemistry

- Emissions consistent with RCPs
- Tropospheric (and stratospheric) chemistry for offline simulations (long-term IPCC simulations)
- Tropospheric chemistry for short-term simulations
- Aerosols
- Enough simulations to track tails of PDF
- Enough simulations to identify the role of variations in emissions

Chemistry MIP for AR5

- Coordinated by D. Shindell (NASA/GISS) and myself (in contact with CCMval and AEROCOM)
- Will define science questions and necessary outputs
- Simulations scheduled to start in 09
- Define climatology for AOGCMs

What to do about aerosols? Coordination with P. Ginoux (GFDL) for natural aerosols