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OUTLINE
» Examples and description of AMOC variability,
+ Examples of its potential predictability,

- Brief discussion of AMOC features in a CCSM3 present-day
control simulation,

* Questions / Summary.



Many coupled general circulation models (CGCMs) exhibit multi-decadal
or longer time scale (20 - 100+ years) variability in their AMOCs.

Time series of the AMOC maximum from CCSM3 present-day control simulations
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MOC IN THE 20™ CENTURY ENSEMBLE INTEGRATIONS
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HEAT CONTENT CHANGES between mid-1990s and mid-1950s

(CCSM3 20th Centurv cimulations - 1870 contral inteqration)
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ATLANTIC MULTI-DECADAL OSCILLATION (AMO)

AMO INDEX (SST, °C)
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Some recent observational and CGCM studies have:

- shown significant climate impacts of these AMO and AMOC
variabilities, respectively, over a broad region that stretches to the
Indian Ocean,

- suggested that the AMOC variability may be predictable on decadal
time scales, implying potential predictability of the associated climate
changes in North Amerige
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2000-2007 year trend in annual AMOC timeseries 2007-2016 year trend in annual AMOC timeseries
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ATLANTIC MERIDIONAL OVERTURNING CIRCULATION (AMOC)
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SEA SURFACE TEMPERATURE (SST)
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MEAN SST BIAS
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DENSITY REGRESSIONS WITH
AMOC PC1 TIME SERIES
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QUESTIONS / SUMMARY

Since Delworth et al. (1993) study, there is a broad consensus that
the density anomalies in the "sinking region” of the AMOC drives
this variability.

However, many fundamental questions still remain largely
unanswered:

- mechanism [nature of this mode, role of the North Atlantic
Oscillation (NAO)],

- robustness of mechanism,
- fime-scale,
- implications for initialization and predictability,

- implications for our assessments of 20™ century, future
scenario, etc. climates,



SUMMARY and CONCLUSIONS

» This multi-decadal variability shows rather large amplitudes in both
AMOC and SST. Comparisons of the latter with observations indicate
that neither the pattern nor the magnitude of the SST anomalies is
realistic. However, the role of the mean-state biases remains unclear.

* These SST anomalies are created by the fluctuations of the subtropical
-subpolar gyre boundary driven by small scale WSC anomalies.

* The present results do not support an ocean mode that relies on a phase
lagged relationship between temperature and salinity in their
contributions to the total density in the model's associated deep water
formation region.

- Atmospheric variability associated with the model's NAO appears to play
a prominent role in maintaining this variability.

- A hypothesis is that regimes involving “strong” oscillatory behavior
indicate an ocean-atmosphere coupled mode in contrast with an ocean-
only mode that can be excited by stochastic atmospheric forcing during
“weak" / “irregular” regimes.
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LABRADOR SEA ADVECTIVE HEAT FLUX REGRESSIONS
WITH AMOC PC1 TIME SERIES
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SIMPLIFIED DIAGRAM OF PHASE RELATIONSHIPS
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- reduced sea-ice cover, - increased sea-ice cover,

- increased surface heat loss, - reduced surface heat loss,

- increased upwelling of salt - reduced upwelling of salt,

- diffusive fluxes



Unfortunately, observational data are not long and good enough to
say whether such decadal or longer time scale AMOC variability
exists in nature.

Recent observational studies based on instrumental and proxy data
show distinct multi-decadal variability in SSTs with periods of
about 50-80 years, particularly dominant in the North Atlantic. Its
spatial pattern is largely hemispheric, indicating broad warming /
cooling with a maximum local amplitude of 0.5°C. This variability is
usually referred to as the Atlantic Multi-decadal Oscillation (AMO)
and its has been associated with multi-decadal variations of the
North American and Western European climates.

A broad resemblance between the CGCM simulated and observed
SST variability patterns in the North Atlantic. This variability is
usually associated with the AMOC variability in CGCM studies
despite significant differences in the associated SST patterns,
amplitudes, and periods.



To summarize ...... because of

- its association with variations in the meridional oceanic heat
transport, North Atlantic SSTs and climatic variables such as air
temperature, precipitation, hurricanes, etc.,

- its potential predictability,

- its possible role in abrupt climate change, particularly in response
to anthropogenic forcing,

there is an intense interest in the AMOC variability to answer the

above issues and to develop nowcasting and projection systems for
AMOC.



Ensemble Mean Trends from CCSM3 Large Ensemble (PSL)

DJF 2000:2007 hPa 8yr’ MAM 2000:2007 hPa 8yr” JJA 2000:2007 hPa 8yr" SON 2000:2007 hPa 8yr" ANN 2000:2007 hPa gyr’

4 -35 -3 25 2 15 -1 05 0 05 1 15 2 25 3 35 4



Ensemble Mean Trends from CCSM3 Large Ensemble (TS)
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