Decadal Multi-Model Potential Predictability

G.J. Boer Canadian Centre for Climate Modelling and Analysis Environment Canada University of Victoria

Predictability approaches

- o Classical predictability
 - feature of the physical system
 - measures the rate of separation of initially close states
- o Potential predictability
 - looks for the existence of deterministic long timescale variability
 - presumes this variability is "potentially" predictable with enough knowledge
 - -location and nature of the potential predictability should suggest mechanisms and processes

Internally generated long timescale variability

Statistical model

Statistical model is

$$X = \Omega + v + \varepsilon$$

with associated variances

$$\sigma^2 = \sigma^2_{\Omega} + \sigma^2_{\nu} + \sigma^2_{\varepsilon}$$

- Ω is long timescale *externally forced* variability (if present)
- v is long timescale internally generated variability
- ε is short timescale unpredictable "noise" variability
- Potential predictability variance fraction is

$$p = (\sigma^2_{\Omega} + \sigma^2_{\nu})/\sigma^2 = p_{\Omega} + p_{\nu}$$

Forced and internally generated variability

Approach

- Need suitable statistical tests and approaches
- Require lots of "observations" for statistical confidence
- Aim for geographic distribution of the potential predictability variance fractions (ppvf)
- We take a multi-model ensemble approach using CMIP3 data (IPCC AR4)

Statistics

$$X_{i} = X_{(\alpha-1)M+j} = X_{\alpha j} \qquad \qquad \begin{array}{l} i = 1 \dots NM \\ \alpha = 1 \dots N \\ j = 1 \dots M \end{array}$$

$$X_{\alpha j} = P_{\alpha} + (X_{\alpha \bullet} - P_{\alpha}) + (X_{\alpha \bullet} - X_{\alpha j}) \qquad \qquad X_{\alpha \bullet} = \frac{1}{M} \sum_{j=1}^{M} X_{\alpha j} \\ S^{2} = S_{\alpha}^{2} + S_{\nu}^{2} + S_{\varepsilon}^{2} = \overline{X^{2}} \qquad \qquad \text{is M-year average} \\ = \overline{P_{\alpha}^{2}} + \overline{(X_{\alpha \bullet} - P_{\alpha})^{2}} + \overline{(X_{\alpha \bullet} - X_{\alpha j})^{2}} \qquad \qquad P_{\alpha} = \sum_{k=1}^{K} a_{k} p_{k}(\alpha) \\ \text{is orthogonal polynomial fit} \\ \text{forced internally generated} \qquad \qquad \text{is orthogonal polynomial fit}$$

Statistics are pooled across models in multi-model case

Apply to CMIP3 control climates

- (intended to be) equilibrium climate
- no external forcing we consider the *internally* generated variability
- Potential predictability:
 - measured as fraction of variance $p_v = \sigma^2_v / \sigma^2$
 - indication of relative importance
 - expect low p_v where σ_v^2 is low **or** σ_v^2 high
- o results from 27 models
- simulations lengths from 100 to 1000 years
- we consider surface air temperature and precipitation (the two main climate parameters)
- measures potential predictability in the model world

Standard Deviation of annual means

Temperature: potential predictability variance fraction $p_v = \sigma^2 / \sigma^2$ (%) for decadal means

- Ratio of "predictable" to total variance
- MME provides stability of statistics: ppvf in white areas <2% and/or not significant at 98% level
- Long timescale predictability found mainly over oceans
- Some incursion into land areas but modest *ppvf* (*denominator* is large)

Control simulations

Precipitation: potential predictability variance fraction $p_v = \sigma^2 / \sigma^2$ (%) for decadal means

- -MME provides "some" significant areas of precipitation
- -Much less potentially predictable than temperature
- Little incursion into land areas
- Precipitation predictability a weakened version of temperature predictability at these timescales

Control simulations

Proposed experiment allows us to consider also "pentades

21st Century potential predictability of forced and internal decadal variability

- B1 Scenario
- o period is from 2000 to 2100
- CMIP3 multi-model approach
- only 11 simulations for full data period (up to 2300)
- initial illustrative calculation of variance components

Forced and internally generated variability

Variances

- $\circ X_{ij} = W_{ij} + X_{ij}$
 - i is decade number and j year within it
 - W_{ij} is representation of forced component from polynomial fit
 - x_{ij} is variation about forced component
- $OY_{ij} = W_{i} + X_{i} + (X_{ij} X_{i})$
 - W_i. + x_i. are contributions to decadal potentially predictable variance from forced and internal variability
 - $(x_{ij} x_{i})$ is noise

Multi-model ensemble approach

- potential predictability without the statistics (i.e. approximate)
- o $\{Y^2\} = \{W_i.^2\} + \{x_i.^2\} + \{(x_{ij} x_i.)^2\}$ forced internal noise
 - { } is average over j and over ensemble
- Variance fractions for each decade

$$p_F = \{W_i.^2\} / \{Y^2\}$$

 $p_I = \{x_i.^2\} / \{Y^2\}$
 $p_I = p_F + p_I$

forced component dominates for longer prediction times

Predicting for the next decade

- $OZ_{ij} = (W_{i}. -W_{i-1}.) + X_{i}. + (X_{ij} X_{i}.)$
 - take the decadal change in forced component to be the forecast information for the next decade
- Variance fractions each decade

$$p_F = \{(W_i, -W_{i-1},)^2\} / \{Z^2\}$$

 $p_I = \{x_i, 2\} / \{Z^2\}$
 $p_I = p_F + p_I$

Decadal variance fractions: Temperature

Next decade within the 21st century

Variance fractions for decade 2010-

- -Although forced component is largest over high latitude land, fractional variance component is not
- Internally generated component of "similar" size (and resembles control run results)
- -Net fractional decadal variance largest over tropical oceans

Net variance fractions for decade 2020-2030: Temperature

- o early 21st century
- "multi-year" view
 - forced component grows and soon dominates
 - fractionally is largest over tropical oceans
 - internal variability diminishes as a fraction
- for "next decade" view
 - forced component comparable to internal

multi-decade

next decade

Potential predictability of internal component for a warmer world

Potential predictability in a warmer world (stabilization case)

- Consider long timescale *internally* generated natural variability σ^2
 - last 150 years of stabilization simulations
 - remove forced polynomial trend
 - estimate potential predictability in warmer world
 - estimate change in potential predictability from control case

Decadal potential predictability p_v for *Temperature*

Control simulation

B1 stabilization scenario

Difference in warmer world

Where confidence bands don't overlap

MME decadal potential predictability of temperature and precipitation

- model based measure
- potential predictability of the unforced control climate
 - fish over folk (especially for precipitation)
 - shorter the better
 - "hot spots" over extratropical oceans for both temperature and precipitation
 - comparatively little potential predictability over land and tropical oceans
 - predictability found for regions/processes where surface connects to deeper ocean

MME decadal potential predictability of temperature and precipitation

- potential predictability in the 21st century
 - adding forced component alters picture
 - tropics become more important
 - forced component soon dominates for multi-decadal forecasts
 - forced component and internal component comparable for next decade forecast
- potential predictability of unforced variability decreases in warmer world

The challenges of potential predictability

- to identify the mechanisms associated with regions of high potential predictability
- to understand the lack of potential predictability over land and, for unforced variability, tropical oceans
- to test potential predictability results by means of (multi-model) prognostic decadal predictions

End of presentation