Decadal Prediction Information




Overview

Uncertainty in projections from Global Climate Models:
- quantifying it (a Bayesian approach) and propagating it

Examples of short term probabilistic projections:

recipitation change for




About probabilistic projections
in a Bayesian framework

I.  Whatis the uncertain quantity, H, I’'m after, and do | have any
knowledge, independent of the data I’'m going to use, that can shape
a-priori its probability distribution, P(H)?

ve, and how does it relate



More concretely

| want to forecast temperature over North America in the next 20
years. Do | have any a-priori knowledge of what that is going to be
like? IPCC-AR4 ensemble? Continuation of current trend? What is its
a-priori probability distribution, P(H)?

What is the decadal-prediction model ensemble saying? What am |
going to look at? Temperature forecasts, straightforwardly? ENSO/
NAO indices? If the real temperature was “h” how do | expect the
model data to behave? What is the likelihood of the data,

P(D | H=h)?

How do | compute Bayes theorem, and update my prior into a new
distribution informed by the data, P(H|D)? Markov Chain
Montecarlo algorithms.



What are we going to look for in the model output?
Temperature for temperature, precipitation for precipitation?

Indices of which we have some sense of the predictability and
teleconnection patterns?

Il boils down to decide on H and to determine a P(D|H)




An example:

Joint projections of temperature and precipitation

ing the CMIP3 ensemble




What is H and what does P(D|H) look like

*We choose H to be the true climate signal time series (decadal averages of
temperature and precipitation). We expect it to be a piecewise linear trend
with an elbow at 2000, to account for the possibility that future trends will be

different from current trends.

eSuperimposed to the piecewise linear trends is a bivariate gaussian noise with
a full covariance matrix, which introduces correlation between temperature
and precipitation: that is what we observe and what GCMs simulate, our D.

* GCMs may have systematic additive bias, assumed constant along the length
of the simulation;

e after the bias in each GCM simulation is identified and accounted for, the
variability around the true climate signal is model-specific;

eobserved decadal averages provide a good estimate of the current series, their
correlation, and of their uncertainty.



P(D|H) looks like:
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We derive a joint posterior distribution for all of the parameters,
In particular for the time series of temperature and precipitation
signals:
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Probabilistic projections
for temperature and precipitation
bal DJF averages
1950 to 2100 ¢
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Climate Scenarios:
From frequencies to time series

e GCM ensemble projections are given as frequency distributions of
decadal averages or linear trends

hydro, demand, ecosystem, etc) ne



Future temperature scenarios through a biased
resampling approach:
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Future precipitation scenarios through a biased resampling approach:
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Each of the synthetic time series (many for each decile of the probability
distribution of temperature change over Northern California) is fed into a
water resources management model, producing probabilistic impact
projections.
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Translating GCM projections into agricultural impacts




We estimate empirical models of crop yield changes:
e.g., Barley
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Each dot on the graphs

Global yield of barley (annual statistic, FAO)

Average temperature (and precipitation)
aggregated over all barley-growing regions,
for the crop-specific growing season

t, these are actually changes from year to year

e series).




We then plugin

(AT;,AP))

from the joint probability distribution estimated from
imate models’ output




Areas where barley is grown




Results from Bayesian analysis of GCM output
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Sampling from uncertain climate projections

AY, = BAT; + JAP,
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A probability distribution of yield changes
in the face of uncertain climate projections

I
-10 -9

% current Yield




Uncertainties in crop response to climate variability
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Uncertainties in crop response to climate variability
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Uncertainties in crop response to climate variability
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Uncertainties in crop response to climate variability
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Uncertainties in crop response to climate variability
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Uncertainties in crop response to climate variability
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Uncertainties in crop response to climate variability
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Uncertainties in crop response to climate variability
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Uncertainties in crop response to climate variability
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Uncertainties in crop response to climate variability
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Uncertainties in crop response to climate variability
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If we didn’t care about climate change uncertainty
but we cared about crop response uncertainty:

AY, = BAT" + 7. AP’




Yield changes in the face of certain climate change
but uncertain crop response
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Yield changes in the face of certain climate change
but uncertain crop response or viceversa
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Yield changes in the face of uncertain climate change
and uncertain crop response
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Conclusions

Many sectors can take advantage of short term projections.
Even better if projections become predictions, i.e. if they become more
precise.

A probabilistic format is a natural way of delivering this information
It may be a full PDF or samples from it or quantiles.

The set up is conducive to a Bayesian approach, with possibly prior
information, data updating our believes, and a flow of additional
information coming in over time that may help reshape the forecast

There is a range of possible “deliverable” from straightforward
temperature and precipitation average projections to expected patterns
of temperature and precipitation connected to low frequency indices,
whose predictability may be better understood.



