ENSO Predictability and Prediction

Predictability:

- 1. Why we can predict
- 2. How far into the future can we (theoretically) predict What is limiting the predictability? Model Error, Initial Condition Error, Intrinsic Limits

Prediction:

- Historical Forecasting (no cheating)
 Also predictability!
 - Need to Assess Forecast Quality
- Forecasting the FutureNo Substitute for Real Prediction

(I) Predictability: Why We Can Predict (Precursors)

Current Limit of Predictability of ENSO (Nino3.4) Potential Limit of Predictability of ENSO

(II) Predictability: How Far Into The Future Can We Predict What Limits Predictability

Worst Case: Initial Condition Error (Atmos+**Ocean**) + Model Error <u>Better Case</u>: Initial Condition Error (Atmos Only) + Model Error

Best Case: Initial Condition Error (Atmos Only) + No Model Error

Historical Forecasting

- CCSM3.0 vs. CCSM3.5
 - Initialization
 - Don't Necessarily Need to Have Your Own Data Assimilation System
 - But Much Better Balanced Initialization Possible
 - Impact of Reducing Systematic Error on Prediction Quality
 - Initialization shock
- Multi-Model
 - Mechanism for Quantifying Uncertainty
- Statistical Forecasting
 - Needed

Nino3.4 Correlation Coefficient

CFS ———

CCSM —

Multi-Model ———

Impact of Reducing Systematic Error

CCSM3.0 Jan 1982 IC

CCSM3.5 Jan 1982 IC

CCSM3.0 Jan 1983 IC

CCSM3.5 Jan 1983 IC

Nino3.4 Correlation 1982-1998: Jan 01 Oics

NINO3.4 SST mean square skill scores

84 start dates from 19810201 to 20011101 Ensemble sizes are 80 (MM) and 11 (0001)

Dynamic Models Improving and Competitive with Statistical Models

Skill in SST Anomaly Prediction for Nino-3.4 [DJF 81/82 to AMJ 04]

15-member CFS re-forecasts

Saha et al. (2006; NCEP CFS)

No Substitute for Real Prediction

Nino34 Forecast vs. Observations 1 Month Lead

No Substitute for Real Forecasting

IRI Nino34 Forecast Archive February 2002-September 2006

Running Seasonal Means

Nino34 Forecasts Percent Correct Sign

Decadal Predictability (Prediction)

Estimated PDO

Estimated NPO

NP Index Regression: Heat Content And SST Along 42N

Б 5 3 Lag-Lead (years) 0.3 0.9 $-\widehat{0.6}$ -8 -0.3-9-10 140E150E160E170E 180 170W160W150W140W130W120W

Heat Content And SST Along 42N and 180

North Pacific Index = SST Averaged from 150-170 and 40-45N

North Pacific Index Idealized Prediction Experiments

PDO Index Regression: Heat Content And SST Along EQ

PDO Index = SST Averaged from 170E-130W and 5S-5N

Correlation Coefficient

Schneider and Miller

Forecast lead/a

Conclusions

- S-I "Predictability and Prediction" Model Easily Extends to Decadal Time Scales
 - External Forcing
- Model Error Significantly Contributes to Forecast Error
- Initial Condition Error Significantly Contributes to Forecast Error
 - Model Error is an Important Part of Initial Condition
 Error
- Initialization
 - Some Success In Using "Unbalanced" Initial States
 - Need for Balanced Initial States