Capturing timescale interactions:
Clouds, forecasts and drought

Rich Neale, NCAR

Are climate models drought prediction ‘ready’?
Progress in climate modeling for modes of variability relevant to S2S
Dependency on cloud and precipitation processes

Which characteristics are relevant to skill?

When the Rain Stops: Drought on Sub-seasonal and Longer Timescales
AGCI, September 2018
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Orientation

Global climate models (100km grid separation, mostly)

Climate or free running simulations
Mostly NCAR models (CAM3->6): With and w/o an ocean

Globally uniform representations and settings

Value judgements have to be made about the most important foci

* Producing a model that would be the most useful for prediction
(sub-seasonal/seasonal/decadal)

* Only an atmospheric perspective

 BUT: | had a lot of fun lookingat this!



| Lack Focus: The Perils of Global Model Development

Variability Processes/Parameterizations
US Summer time precipitation  Convection

Madden Julian Osc. (MJO) Boundary layer turbulence
Equatorial Wave Variability Cloud microphysics

ENSO Surface drag

Indian Monsoon Precipitation over orography
American Monsoon

Diurnal Cycle Climate and Change
Sub-seasonal Forecasts Climate sensitivity
Atmospheric blocking Cloud feedbacks

Labrador sea ice Cloud aerosol interactions

Problems Mostly Related to Precipitation



Tropical Sources of S2S Prediction




MJO Progress: Intraseasonal (weeks

Madden Julian Oscillation (MJO)

Neale, et al., (2018) Diurnal, Sub-Seasonal and Seasonal Variability in the
Community Atmosphere Model, version (CAM6), JAMES, in prep.



MJO Progress: Intraseasonal (weeks)

Madden Julian Oscillation (MJO) — 30-60 day composite

CAMG6 (2018)
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e Directlylinked to changes in convection cloud
* Increase stable-layer sensitivity of convective plumes

Neale, et al., (2018) Diurnal, Sub-Seasonal and Seasonal Variability in the
Community Atmosphere Model, version (CAM6), JAMES, in prep.



MJO Downstream Sub-seasonal Impacts

7-10 days before event

Heavy West Coast Precipitation Events
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El Nino: Seasonal/interannual (years)

SST anomalies correlated with Nino3.4 SST anomalies
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* Directly linked to changes in convection cloud Peak nino 3.4 - DIF
. SST/Tsurf and PSL (lines)
* Incloud entrainmentand momentum transport

Neale, R.B., J.H. Richter, and M. Jochum, 2008: The Impact of Convection on ENSO:
From a Delayed Oscillator to a Series of Events. J. Climate, 21, 5904-5924




% of total rainfall

% of total gridpoints.

Precipitation Distributions
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Daily means (5 years)
100-km resolution
CAM3->CAMG6 (15yrs)

* Too few dry days

* 10-20mm/day drizzle

* Improved wet freq.

e Mutli-scale organization
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CAM Mean Precipitation Biases - Winter
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e 20 vyears(1998-2018)
 Persistent biases across USA
e Bias halvedin South-East and West



CAM Mean Precipitation Biases - Summer
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 Mid-west biases have changed over time

* Biasesover mid-west have worsened, mountain westimproved
* Deficient deep convection

* Lack of organization representation



% of total rainfall

% of total gridpoints.

Precipitation Distributions: West
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improvement

Strong event contributions
well captured



% of total rainfall

% of total gridpoints.

Precipitation Distributions: Plains
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US Great plains (JJA)
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* Too few wet days
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% of total rainfall

% of total gridpoints.

Precipitation Distributions: Resolution?
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US Great plains (JJA)
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CAMS5 example

100km -> 25km (HR)
Not a factor

Convective
parameterization issues



Precipitation >10-day dry, %days

No model drought over
ocean!

* Recentincreased dry
periods in CAM6

* Too lengthy dry periods in
dry regions
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Precipitation Succession
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Klingaman, N. P., Martin, G. M., and Moise, A.: ASoP (v1.0): a set of methods for analyzing scales of precipitation in
general circulation models, Geosci. Model Dev., 10, 57-83, https://doi.org/10.5194/gmd-10-57-2017, 2017.



Rate Succession

Value at t+1 (mm/day)
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They’re more than a bit different !!

Zero followed by zero rainfall is much less frequent

It is most likely that the +1 day rainfall rate is the same is the initial rate
e.g., Persistent in time

This model can simulate a soup of precipitation in space and time
Other models (e.g., CMIP5) can give similar distributions



Rate Succession

Value at t+1 (mm/day)
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They’re more than a bit different !!

Zero followed by zero rainfall is much less frequent

It is most likely that the +1 day rainfall rate is the same is the initial rate
Persistent in time

This model can simulate a soup of precipitation in space and time
Other models can give similar distributions
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Hindcasts: A good start?
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Summary

* Models may now be good enough for some useful S2S prediction

* Precipitation processes on multi timescales are still lagging

* Droughtepochs are present inthe model

* Are characteristics important for skill?

* Global modeling has tradeoffs for resolution, processes, regional
requirements that have to be considered

* Drought relevant precipitation/clouds/convection diagnostics
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Bi-variate correlation with observed RMM

CAM Hindcast Skill
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of MJO variability (RMM)

 CAMb5-deep only models to
retain skill out to 20 days

* |n contrasts to AMIP
simulations!

Klingaman et al., 2015



Droughts are at leastintra-seasonaland longerin timescale
Yet cloud scales are much shorter generally< 1 day
Is there any direct linkage between these timescales

Understandinghow models perform at these short timescales is key to
improving drought prediction and simulation on all timescales

Local and non-local influences

Tropical precipitation->large-scale heating from clouds
US precipitation->no heating from clouds

Climate model perspectives

Thisis a drought prediction conference
| don’t do prediction

BUT | do make and lookat many past prediction from the perspective of
improvingintra-seasonal prediction

We have to get everywhereright in a global model

We get MJO/ENSO improvements from processes that act on the small scales
| know nothingabout stakeholders

BUT what does this tell us about Flash Droughts ?7??



CAM Hindcast Skill
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CLOUDS

Representation of clouds and cloud processes (rain)
is a key ingredient for prediction




