BASF – We create chemistry

- Our chemistry is used in almost all industries
- We combine economic success, social responsibility and environmental protection
- Sales 2017: €64,457 million
- EBIT 2017: €8,522 million
- Employees (as of December 31, 2017): 115,490
- 6 Verbund sites and 347 other production sites

BASF Ludwigsafen
Chemical products contain carbon
„Decarbonization“ is not a usefull term
Reduction of greenhouse gas emissions with increased production

Development since 1990
Index 1990 = 100%, BASF Group excl. oil and gas business

- +104% volume of sales product
- −48.3% absolute greenhouse gas emissions
- −74.7% specific greenhouse gas emissions
Elements of Energy Management at BASF

Energy Verbund
Linkage of energy flows between production plants

Energy Production
High efficient combined heat and power plants (CHP) with combined cycle gas turbines (CCGT)

Energy Efficiency
Process optimization e.g. new catalysts in the acrylic acid plant, heat integration, ...

Annual savings
Primary energy 18 mill. MWh
CO₂ emissions 3.9 mill. t CO₂

Annual savings
Primary energy 13 mill. MWh
CO₂ emissions 2.6 mill. t CO₂

Several hundred measures per year

* BASF Group 2017
DECHENA Technology Study: Low carbon energy and feedstock for the European chemical industry

- **Scope: European chemical industry**
 Methanol, ethylene/propylene, benzene/toluene/xylene, ammonia/urea, chlorine
 > 50% of energy consumption and GHG-emissions of European Chemical Industry

- **Technology measures**
 Energy efficiency, biomass and waste, H₂+CO₂-based processes, H₂ only from water electrolysis

- **Four Scenario calculations** based on selected percentages of technology implementation

- **No carbon leakage**

- Additional impact of CO₂-based methanol and ethanol as fuel component
CCU: Using CO₂ as feedstock

Energy Content

- **Hydrocarbons**: Benzene, Ethylen, Polyethylen, Polypropylen...
- **Oxygene rich Chemicals**: Formaldehyde, Ethanol, Acrylic acid, Formic acid...

![Chemical structures and reactions involving CO₂ and H₂O]
DECHHEMA Technology Study: Results of scenario calculations (w/o fuels production)

- **210 Mt (Maximum)**: 175% of BAU emissions
 - Available in 2050: 3400 TWh (IEA)

- **101 Mt (Ambitious)**: 84% of BAU emissions
 - 70 Mt (Intermediate): 59% of BAU emissions

- **4900 TWh (Maximum)**: 140% of anticipated capacities
 - 1900 TWh (Ambitious): 55% of anticipated capacities
 - 960 TWh (Intermediate): 30% of anticipated capacities

- **300 Mt (Maximum)**: 80% of large source emissions
 - 100 Mt (Ambitious)

- **250 Mt (Maximum)**: (30% of sustainable non-food biomass)
 - 200 Mt (Intermediate): 24% of sustainable non-food biomass
 - 50 Mt (Intermediate)

- **215 Mt (Ambitious)**

- **27 bill. €/y (Maximum)**
 - 19 bill. €/y (Ambitious)
 - 17 bill. €/y (Intermediate)

- **Investment Requirements (bill. €/y)**: 2 (BAU)

BAU: business-as-usual
Emissions in the Chemical Value Chain

To produce

~20 Basic Chemicals

~20,000 Chemicals in the value chain

80% GHG Emissions

20% GHG Emissions

R & D focus on big emitters needed
Methane pyrolysis – a new source of H_2

Project outlook and financing aspects

R&D-Project
funded by the German Ministry of Education and Research

Pilot Unit
~€20-40 million investment
Start-up ≥2020,

Reference/demonstration unit on commercial scale
~€100 million investment
Start-up ≥2024,

Risks
• breakthrough process development
• carbon utilization in metallurgy
• industrial scale reference required
• CAPEX and OPEX support needed
More Hydrogen from the same amount of renewable Energy by Methane Pyrolysis

H₂ by **Water Electrolysis**

\[\text{H}_2(g) + 0.5 \text{ O}_2(g) \rightarrow \text{H}_2(g) + 0.5 \text{ O}_2(g) \]
\[\Delta H^o = +286 \text{ kJ mol}^{-1} \text{ H}_2 \]

H₂O(l)

H₂ by **Methane Pyrolysis**

\[\text{CH}_4(g) + \text{C}(s) + 2\text{H}_2(g) \rightarrow \Delta H^o = +37 \text{ kJ mol}^{-1} \text{ H}_2 \]

87% less energy
But: fossile feedstock
Alternative: Bio-Methane if available
Our contribution to fulfill the Paris agreement – Avoidance with highest contribution

- **Energy Efficiency**: High efforts to tackle remaining opportunities

 - **Sustainable Biomass as feedstock**: BASF Biomass Balance and dedicated Bio-based products
 - **Waste as feedstock**: Use waste in a reasonable way while limiting effects on climate
 - **Focus on products with high oxygen content and thus less energy needs**

- **Avoidance**

 - **CO₂ Avoidance by new production technologies**
 - **Research and Development of low CO₂ processes for chemicals with highest emissions**

- **Use of limited resources like biomass and renewable energy based on best value to society limit availability for chemistry**
Learnings

- Large-scale CO2-reductions can only be achieved through a significant electrification of industrial processes, leading to a huge increase of low-carbon electricity demand.

- Radically lowering the price of renewable electricity, including Government driven surcharges and levies, presents an indispensable prerequisite for a successful industrial transformation.

- R&D funding programs contribute to accelerate the development of new technologies.

- To turn these R&D activities into actual investments, we need a global (at least G20) CO2 price to allow for a business case. The economic constraints around zero-carbon transformation needs to be acknowledged.
BASF
We create chemistry