Extreme events in the ocean: Episodic vigorous mixing above the continental slope

Kirstin Schulz (University of Texas at Austin)
Markus Janout, Jens Hölemann, Sinhue Torres-Valdés, Andreas Rogge (AWI),
Yueng-Djern Lenn, Tom Rippeth, Ben Lincoln, Brian Scannell (Bangor),
Vasiliy Povazhnyy (AARI, St. Petersburg),
Stefan Büttner (University Kiel)

kiki.schulz@utexas.edu
The Arctic Ocean
Turbulent mixing in the central Arctic Ocean (MOSAiC campaign)
Turbulent mixing in the central Arctic Ocean (MOSAiC campaign)

- strong halocline confines turbulence to surface layer
Turbulent mixing in the central Arctic Ocean (MOSAiC campaign)

- strong halocline confines turbulence to surface layer
- slightly increased turbulence at deeper layers after breakdown of halocline and above complicated topography
- overall: low levels of vertical mixing and transport
Turbulent mixing at the slope (summer 2018, Laptev Sea)

- turbulence typically confined to boundary layers
Turbulent mixing at the slope (summer 2018, Laptev Sea)

- turbulence typically confined to boundary layers
Turbulent mixing at the slope (summer 2018, Laptev Sea)

- turbulence typically confined to boundary layers
- turbidity confined to near bottom layer (shelf)
Turbulent mixing at the slope (summer 2018, Laptev Sea)

- turbulence typically confined to boundary layers
- turbidity confined to near bottom layer (shelf)
- nutrients in surface depleted
Turbulent mixing at the slope (summer 2018, Laptev Sea)

- turbulence typically confined to boundary layers
- turbidity confined to near bottom layer (shelf)
- nutrients in surface depleted
- Single high turbulence station!
Turbulent mixing at the slope (summer 2018, Laptev Sea)

- bottom layer (shelf):
 - turbulence typically confined to boundary layers
 - turbidity confined to near bottom layer (shelf)
 - nutrients in surface depleted
 - Single high turbulence station!

- surface layer:

Questions

1. Where does this come from?
2. Does this happen often?
3. Effect on transport?
How was the mixing generated?
How was the mixing generated?
How was the mixing generated?

- Storm (observed prior to the measurements) drives cross-shelf Ekman transport and coastal convergences (Danielson et al., Frontiers 2020).
How was the mixing generated?

- Storm (observed prior to the measurements) drives cross-shelf Ekman transport and coastal convergences (Danielson et al., Frontiers 2020).
- Barotropic disturbances (observed here) propagate cyclonically around the Arctic as continental shelf waves (Danielson et al., Frontiers 2020).
How was the mixing generated?

- Storm (observed prior to the measurements) drives cross-shelf Ekman transport and coastal convergences (Danielson et al., Frontiers 2020).
- Barotropic disturbances (observed here) propagate cyclonically around the Arctic as continental shelf waves (Danielson et al., Frontiers 2020).
- Their associated down-slope flow component displaces isopycnals downward (observed here), resulting in a trapped lee wave, as forcing period is longer than local inertial period (as in Fer et al., GRL 2020).
How was the mixing generated?

- Storm (observed prior to the measurements) drives cross-shelf Ekman transport and coastal convergences (Danielson et al., Frontiers 2020).
- Barotropic disturbances (observed here) propagate cyclonically around the Arctic as continental shelf waves (Danielson et al., Frontiers 2020).
- Their associated down-slope flow component displaces isopycnals downward (observed here), resulting in a trapped lee wave, as forcing period is longer than local inertial period (as in Fer et al., GRL 2020).

Next Question
How often does this happen?
How often do these mixing events happen?
How often do these mixing events happen?

- on average 8 times per year
How often do these mixing events happen?

- On average 8 times per year
- Strong link to low sea ice cover
- Frequency might increase in the future with further receding sea ice
How often do these mixing events happen?

- on average 8 times per year
- strong link to low sea ice cover
- frequency might increase in the future with further receding sea ice

Next Question

What about the transport?
Suspended sediment transport

- lateral transport at intermediate depths important factor on pan-Arctic scale, but mechanisms unclear
Suspended sediment transport

- lateral transport at intermediate depths important factor on pan-Arctic scale, but mechanisms unclear
- here: suspended sediment cloud of \(~500 \text{ g m}^{-2}\) originating from upper slope, contributes to basin sedimentation flux and carbon burial
Vertical nutrient transport

![Graph showing vertical nutrient transport with data points and labels for years, transects, and longitudes.]
Vertical nutrient transport

![Graph showing nutrient transport](image)
Vertical nutrient transport

Impact:

- Locally enhanced primary productivity.
- Contribution of spatially confined, episodic events at slope to overall vertical nutrient transport comparable to "background" transport contribution over whole basin.
Summary

- New energy conversion mechanism for vertical mixing above Arctic continental slopes.
Summary

- New energy conversion mechanism for vertical mixing above Arctic continental slopes.
- First observation of intermediate nepheloid layer this far north, connects shelf and basin, might significantly contribute to basin sedimentation flux.
Summary

- New energy conversion mechanism for vertical mixing above Arctic continental slopes.
- First observation of intermediate nepheloid layer this far north, connects shelf and basin, might significantly contribute to basin sedimentation flux.
- Mixing events resupply nutrients to surface and boost late primary productivity, contribution to overall nutrient supply ~equal to basin-wide weak (summer) mixing.