Modeling for Policy Impact
Mark W. Rosegrant
Research Fellow Emeritus
IFPRI

Draws upon World Bank-funded research on ENSO impacts and responses in the Philippines by Mark W. Rosegrant, Jawoo Koo, James Thurlow, Rowena Valmonte-Santos, Ricky Robertson, Leocadio Sebastian, and Angga Pradesha.
Entry points for model-based approaches – when are models useful? Or, how do you make models useful?

Primary strategies for abating food shock crises

Decision contexts – interventions/investments/policies for response or resilience?

Types of information and tools used, additional information and tools desired

Example: Assessment of ENSO impacts and policy responses in the Philippines
Making Models Useful for Policy Analysis and Impact

<table>
<thead>
<tr>
<th>CHALLENGES</th>
<th>RESPONSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asking the right questions</td>
<td>• Find out the needs and intentions of the stakeholders (Philippine National Economic and Development Authority, Department of Agriculture, World Bank)</td>
</tr>
</tbody>
</table>
| Modeling design useful to policy- and decisionmakers | • Improve modeling design
 • Integration of biophysical-hydrology-economics
 • Multi-scales – local, national, regional
 • Consistent upscaling and downscaling across levels
 • Greater spatial disaggregation to address sub-national issues |
| Information for enhanced understanding | • Better description and presentation
 • Use of interactive models |
| Transparency, training, transfer, and open access | • Seek to transfer models to stakeholders
 • Encourage transparency through open access for effective policy outreach |
1 Measuring Economic & Social Impacts
Spatial Agriculture-Economy Models

Weather & Climate
- Rainfall
- Temperature

Crop Management
- Seed varieties
- Chemical fertilizer
- Irrigation
- Crop calendar

Livestock & Fisheries
- Stock deaths
- Ocean capture

Infrastructure
- Roads, ports
- Agricultural capital

Policies
- Seed varieties
- Irrigation infrastructure
- Trade policy
- Price policy (subsidies)
- Social nets

Crop Production Impacts
- Spatial crop models (DSSAT)

Biophysical Outcomes
- Crop yields by region

Economywide Impacts
- Spatial CGE-microsimulation model

Economic Outcomes
- GDP and poverty by region

Temperature Humidity Index

Luzon
Mindanao
Visayas
Agriculture shocks spillover to broader food system and economy

Agri-Food System GDP and Employment, 2011

- **GDP**:
 - Trade & transport (agri-food related): 30.3%
 - Input production (agri-food related): 9.6%
 - Agro-processing (manufacturing): 12.5%
 - Agricultural sector: 32.5%

- **Employment**:
 - Trade & transport (agri-food related): 6.2%
 - Input production (agri-food related): 32.5%
 - Agro-processing (manufacturing): 44.4%
 - Agricultural sector: 0%

Source: 2011 Philippines Social Accounting Matrix
ENSO Impacts on Crops

- Predicted yield impacts vary by crop and region
- Yields fall during El Niño and rise during La Niña
- La Niña yield gains are smaller than El Niño losses

Source: Gridded DSSAT crop model simulations weighted by IFPRI’s spatial agricultural production database
GDP Falls During El Niño

Average GDP Losses During El Niño Relative to Non-ENSO year
(US$ billions or % reduction)

<table>
<thead>
<tr>
<th>National economy</th>
<th>National AFS</th>
<th>National agriculture</th>
<th>National</th>
<th>Luzon</th>
<th>Visayas</th>
<th>Mindanao</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3.3</td>
<td>$2.7</td>
<td>$1.8</td>
<td>$1.6</td>
<td>$0.8</td>
<td>$0.3</td>
<td>$0.6</td>
</tr>
<tr>
<td>1.6%</td>
<td>4.2%</td>
<td>7.0%</td>
<td>8.0%</td>
<td>9.3%</td>
<td>7.3%</td>
<td>7.0%</td>
</tr>
</tbody>
</table>
Poverty Rises During El Niño

Poverty Rises During El Niño
(Millions more poor people or %-point increase in poverty rate)

National: 5.1%
Luzon: 3.2%
Visayas: 0.8%
Mindanao: 1.1%

(0.0% - 600.0%)
Policies to Reduce Economic Costs
Range of Policy Interventions

- **Drought-tolerant seed varieties**
 - 3% smaller yield losses during El Niño years

- **Additional irrigation**
 - 5-8% more land is irrigated in each region

- **Subsidize food imports during shock**
 - 25% price subsidy on cereals, 100% subsidy on processed foods

- **Remove rice import quotas**

- **Distribute stored grains**
 - 500,000mt rice and 100,000mt maize distributed through markets

- **Cash transfers for poor households**
 - US$15 per person in poorest three income quintiles
Offsetting GDP and Poverty Impacts

Policy Curbs GDP Losses and Poverty During Strong El Niño Event
(US$ billions lost or millions more poor people)

Policy	Impact
El Niño	$3.3
Drought-tolerant seeds	$3.1
Irrigation	$3.0
Subsidize food imports	$3.2
Remove rice quotas	$2.5
Stored grains	$3.1
Cash transfers	$3.3
Combined	$1.9

-5.1 4.8 4.5 4.7 4.8 4.5 1.2 -1.9

Chips: 3.3 3.1 3.0 3.2 2.5 3.1 3.3 1.9
Summary of Policy Options

- Philippine economy and its people are vulnerable to El Niño
 - GDP declines by US$3.3 billion during a strong event
 - 5.1 million more people fall below the poverty line

- Policies can reduce some of the damages caused by ENSO
 - But no single type of policy can protect all people in all regions

- Need a portfolio of on-farm, market and social policies
 - On-farm policies directly offset GDP losses
 - Market interventions often benefit consumers more than producers
 - Social policies directly target the poor

- Need to offset short-term losses and build long-term resilience
 - Market and social interventions are shorter-term emergency responses
 - On-farm investments contribute to resilience and development
3 Actions to Enhance Resilience to ENSO
Improving ENSO Preparedness—Less Amenable to Modeling, Need Qualitative Analysis

- **Enhance Forecast and Early Warning Systems**
 - **Challenge:** EWS not early/detailed enough to fully benefit local farmers
 - **Goal:** Exploit El Niño’s slow onset to give extension agents and farmers time to respond/adapt

- **Strengthen Local Government Capacity**
 - **Challenge:** Delays in aid delivery blamed for 2015/16 violence in Kidapawan
 - **Goal:** More timely and effective delivery of aid and services in emergency

- **Improve ENSO Financing Mechanisms**
 - **Challenge:** Fast-track funding for El Niño responses delayed in 2015/16 by Senate and disbursement rules
 - **Goal:** Speed up investments in preparedness and responses to ENSO impacts
Enhancing Food System Resilience—Addressed by Modeling

- **Invest in Farmers’ Awareness and Adaptive Capacity**
 - **Goal**: Promote crop diversification, drought-tolerant seed varieties, and cost-effective irrigation rehabilitation/expansion

- **Improve Rural Infrastructure**
 - **Goal**: Invest in and maintain roads, bridges, and other infrastructure to remove bottlenecks and increase markets’ ability to respond to ENSO events

- **Remove Rice Import Quotas, Store More Grains**
 - **Goal**: Use markets to smooth price fluctuations for consumers

- **Strengthen Social Safety Nets**
 - **Goal**: Mitigate immediate welfare costs of ENSO shocks