Statistical methods for managing uncertainty in complex models and their application to global change science

Danny Williamson

University of Exeter

August 19, 2014
Two of the principal challenges for global change science involve specifying L and assessing $P(Y_{1:t}(d))$.

We use models to assist with both. Simplifying, let $Y = (Y_H, Y_F)'$. We observe climate with error $Z_H = Y_H + e_H$. If we can find $P(Y)$ and we know the distribution of e_H, we can easily derive $P(Y_F|Z_H)$. Enter climate models. We have a selection of climate models $f_i(x|[i], \theta)$ used to try to predict Y under forcing θ. How can information from the f_i's get us to $P(Y)$?
Two of the principal challenges for global change science involve specifying L and assessing $P(Y_{1:t}(d))$. We use models to assist with both.

- Simplifying, let $Y = (Y_H, Y_F)'$.
- We observe climate with error $Z_H = Y_H + e_H$.
- If we can find $P(Y)$ and we know the distribution of e_H, we can easily derive $P(Y_F|Z_H)$.
Two of the principal challenges for global change science involve specifying L and assessing $P(Y_{1:t}(d))$. We use models to assist with both.

- Simplifying, let $Y = (Y_H, Y_F)'$.
- We observe climate with error $Z_H = Y_H + e_H$
- If we can find $P(Y)$ and we know the distribution of e_H, we can easily derive $P(Y_F|Z_H)$.
- Enter climate models.
- We have a selection of climate models $f_i(x_{[i]}, \theta)$ used to try to predict Y under forcing θ.
- How can information from the f_i’s get us to $P(Y)$?
Statistical modelling

One model approach:

- Each model is informative for $Y(\theta)$, but there is structural discrepancy left over:

$$Y(\theta) = f_i(x^*_{[i]}, \theta) + \eta_i(\theta)$$

- We can get Monte Carlo samples from $P(Y(\theta))$ if we can sample from

$$P(f_i(x^*_{[i]}, \theta)|x^*_{[i]})P(x^*_{[i]})P(\eta_i(\theta))$$

Statistical modelling

Multi-model approach:

- The models are exchangeable and \(Y(\theta) \) relates to the collection: E.g.

\[
f_i(x^*_i, \theta) = \mathcal{M}(\theta) + R_i(\theta); \quad Y(\theta) = \alpha \mathcal{M}(\theta) + U(\theta)
\]

- We observe \(f_1(x^t_{[1]}), \ldots, f_n(x^t_{[n]}) \) and we can get Monte Carlo samples from \(P(Y(\theta)) \) if we can sample from

\[
P(U(\theta))P(\alpha, \mathcal{M}(\theta)) \prod_{i=1}^k P(f_i(x^*_i) | f_i(x^t_{[i]}), x^*_i, \mathcal{M}(\theta))P(x^*_i)
\]

Often, uncertainties are ignored instead of quantified. This does not reduce uncertainty, it removes problems to the conditioning...
Current practice: What lurks in the conditioning?

Often, uncertainties are ignored instead of quantified. This does not reduce uncertainty, it removes problems to the conditioning...

Example

- The CMIP GCMs are run at $x_{[i]}^t \neq x_{[i]}^*$. I.e. they are not optimally tuned.
- But this is rarely not addressed. In fact, we act as if $x_{[i]}^t = x_{[i]}^*$.
- Now $P(x_{[i]}^*)$ is gone and $P(f_i(x_{[i]}^t, \theta))$, has no code uncertainty!
- Hence we obtain samples from internal variability only and can get to $P(Y(\theta)|x_{[i]}^* = x_{[i]}^t)$.
- Is this a called-off bet that we know is already called off?
Most scientific disciplines have computer models with parameters and quantifying parameter/code uncertainty is now well studied in statistics.

We build a statistical model for the simulator that gives, for any x:

1. A prediction at x
2. Uncertainty on the prediction at x.

If you've heard of Pattern Scaling, it is essentially a special case of an emulator (without 2 and with restrictions on the types of predictions allowed).

25 years of statistical methods for complex models: an introduction

- Most scientific disciplines have computer models with parameters and quantifying parameter/code uncertainty is now well studied in statistics.
- We build a statistical model for the simulator that gives, for any x:
 1. A prediction at x
 2. Uncertainty on the prediction at x.
- If you've heard of Pattern Scaling, it is essentially a special case of an emulator (without 2 and with restrictions on the types of predictions allowed)
Emulators let us cheaply sample from $P(f_i(x^*_i, \theta)|x^*_i)P(x^*_i)$.

They also allow us to improve tuning (reducing uncertainty in $P(x^*_i)$) to make models more informative.

This happens by history matching:

$$I(x)^2 = \frac{(Z - E[f(x)])^2}{\text{Var}[Z - E[f(x)]]}.$$

A point x_0 is ruled out of parameter space if $|I(x_0)| > a$ for some threshold a.

Policy support: Beyond Pattern Scaling

- $P(Y(\theta)) = P(Y|\theta)$.

- Can we get to $P(Y)$ or $P(Y|\theta^*)$?

- How do we make inference and provide decision support beyond the RCPs/SSPs?

- Emulation can help AND carry through the uncertainty!
Critical future research directions

- Huge interdisciplinary challenges include:
 - Parametrisation of scenarios and GCM emulation in scenario space.
 - Including parameter uncertainty in CMIP based uncertainty/policy studies.
 - Understanding, modelling and quantifying model discrepancy.
 - Quantifying uncertainty in observations ($Z = Y + e$).
 - Decision support using all of the above.
Critical future research directions

- Huge interdisciplinary challenges include:

 - Parametrisation of scenarios and GCM emulation in scenario space.
 - Including parameter uncertainty in CMIP based uncertainty/policy studies.

Decision support using all of the above.
Critical future research directions

- Huge interdisciplinary challenges include:
 - Parametrisation of scenarios and GCM emulation in scenario space.
 - Including parameter uncertainty in CMIP based uncertainty/policy studies.
 - Understanding, modelling and quantifying model discrepancy.
Critical future research directions

- Huge interdisciplinary challenges include:
 - Parametrisation of scenarios and GCM emulation in scenario space.
 - Including parameter uncertainty in CMIP based uncertainty/policy studies.
 - Understanding, modelling and quantifying model discrepancy.
 - Quantifying uncertainty in observations \(Z_H = Y_H + e_H \).
Critical future research directions

- Huge interdisciplinary challenges include:
 - Parametrisation of scenarios and GCM emulation in scenario space.
 - Including parameter uncertainty in CMIP based uncertainty/policy studies.
 - Understanding, modelling and quantifying model discrepancy.
 - Quantifying uncertainty in observations \(Z_H = Y_H + e_H \).
 - Decision support using all of the above.
Conclusions

- Decision support in global change science is extremely HARD!
Conclusions

- Decision support in global change science is extremely HARD!
- We’ve got to quantify ALL of the uncertainties before we can reduce them.

Conclusions

- Decision support in global change science is extremely HARD!
- We’ve got to quantify ALL of the uncertainties before we can reduce them.
- Statisticians can (and really want to) help.
Conclusions

- Decision support in global change science is extremely HARD!
- We’ve got to quantify ALL of the uncertainties before we can reduce them.
- Statisticians can (and really want to) help.
- Doing it right will require deep collaboration.
Conclusions

- Decision support in global change science is extremely HARD!
- We’ve got to quantify ALL of the uncertainties before we can reduce them.
- Statisticians can (and really want to) help.
- Doing it right will require deep collaboration.
- ISBA - EnviBayes / RSS - ESS
References

• Tebaldi, C., Sanso, B. (2009), Joint projections of temperature and precipitation change from multiple climate models: A hierarchical Bayesian approach. JRSSA , 172, 83-106.