AGCI Mission

To further the understanding of Earth systems and global environmental change
Support for this workshop

& Other Private Foundations
Outline

- About AGCI
- Tasks this week
- Outcomes and products
Program Areas

- Interdisciplinary Science Workshops
- Research & Consulting
- Education & Public Outreach
- Sponsored Projects
Education & Public Outreach

• NASA & NSF grants for global change science curriculum development
• *From the Horse’s Mouth*
 • Turning AGCI’s 24 years of video into a virtual classroom resource
• Walter Orr Roberts Public Lectures online
Research & Consulting

• Local to regional decision support
• Monitoring and analysis
• Collaborations with research community & stakeholders
• Collaborations with independent researchers
Sponsored Projects

- Hal Harvey, Director
- Identifying outsized policy levers
- Research
 - E.g. German renewables, Chinese cities, natural gas
- Informing key decision-makers and persons of influence

energyinnovation.org/

- Susan Hassol, Director
- Communication workshops for scientists
- Connecting skilled science communicators to the media

climatecommunication.org
Program Areas

- Interdisciplinary Science Workshops
- Research & Consulting
- Education & Public Outreach
- Sponsored Projects
Some underpinnings

- 1972 UN Conference
- 1979 WCRP
- 1987 IGBP
- 1988 IPCC
- 1980’s Mission to Planet Earth, EOS development
- 1989-90 USGCRP
AGCI Founding

• 1988 Rick Chappell brought the idea to the Windstar Foundation (John Denver)
• 1989 NASA supported planning workshop
 – Jack Eddy, John Katzenberger, Rick Chappell
 • Berrien Moore, Tom Malone, George Stranahan, Noel Brown, Cheryl Charles, Greg Wilson, John Christy, Richard Somerville, Payson Stevens, William Rawson, Paul Risser, and Ron Zee
 • Established mission
• 1990 First summer workshop
USGCRP Priority Framework 1990

STRATEGIC PRIORITIES
- Support Broad U.S. and International Scientific Effort
- Identify Natural and Human-Induced Changes
- Focus on Interactions and Interdisciplinary Science
- Share Financial Burden, Use the Best Resources, and Encourage Full Participation

INTEGRATING PRIORITIES
- Documentation of Earth System Change
 - Observational Programs
 - Data Management Systems
 - Focused Studies on Controlling Processes and Improved Understanding
 - Integrated Conceptual and Predictive Models

SCIENCE PRIORITIES

- Climate and Hydrologic Systems
 - Role of Clouds
 - Ocean Circulation and Heat Flux
 - Land/Air/Ocean Water & Energy Fluxes
 - Coupled Climate System & Quantitative Linkage
 - Ocean/Atmospheric Interactions

- Biogeochemical Dynamics
 - Bio/Atmospheric Fluxes of Trace Species
 - Air-Sea Exchange of Trace Species
 - Surface/Deep Water Biogeochemistry
 - Terrestrial Biogeochemistry
 - Nutrient and Carbon Cycling
 - Terrestrial Inputs to Marine Ecosystems

- Ecological Systems and Dynamics
 - Long-Term Measurements of Structural Function
 - Response to Climate and Other Stresses
 - Interactions between Physical and Biogeochemical Processes

- Earth System History
 - Palaeoclimate
 - Palaeoecology
 - Atmospheric Composition
 - Ocean Circulation and Composition
 - Ocean Productivity
 - Sea Level Change
 - Paleohydrology

- Human Interactions
 - Data Base Development
 - Models Linking
 - Population Growth and Distribution
 - Energy Demands
 - Changes in Land Use
 - Industrial Production

- Solid Earth Processes
 - Coastal Erosion
 - Volcanic Processes
 - Permafrost and Marine Gas Hydrates
 - Ocean/Sea Ice Heat and Energy Fluxes
 - Surficial Processes
 - Crustal Movements and Sea Level

- Solar Influences
 - EUV/UV Measuring
 - Atmo/Solar Energy Coupling
 - Irradiance (Measure/Mood)
 - Climato-Solar Record
 - Proxy Measurements and Long-Term Data Base

FIGURE 3.1 USGCRP priority framework. (Reprinted from CES (1990), Figure 1, p. 13.)
AGCI Themes 1990

Solar

Atmospheric Chemistry

Climate

Freshwater

Oceans

Human Social Metabolism

Aquatic Ecosystems

Snow & Ice

Solid Earth

Terrestrial Ecosystems
Bretherton Diagram

Simplified version of Bretherton 1986
Social Process Diagram
Physical, Biological, and Human Dimensions of Global Change • Remote Sensing, Environmental Change, & Human Health • Biogeophysical and Development Fresh Water, Land and Biologic Interactions: Changes and Impacts • The Coupled Climate System and Climate Change • Food, Conservation and Environmental Change: Is Compromise Possible? • Human Social Metabolism • The Early Detection of Global Change • Radiation Feedbacks and the Credibility of Atmospheric Models • Anticipating Global Change Surprises • Biological Invasion as a Global Change • Changes in Global Vegetative Patterns & Their Relationships to Human Activity • Improving the Effectiveness of the Climate Convention • The Metro-Agro-Plex as a Geographical Unit of Analysis for Regional and Global Environmental Change” • Global Change and Natural Hazards • Ranking & Communicating Levels of Confidence to Policy & Media Audiences • Scaling from Site-Specific Observations to Global Model Grids • Planning for a US National Assessment • Innovative Energy Systems & CO2 Stabilization • Climate Extremes: Changes, Impacts, and Projections • Integrating Human and Natural Systems to Understand Climate Change Impacts on Cities • Ecological and Agricultural Consequences of Climatic Extremes and Variability • Industrial Carbon Management: Crosscutting Scientific, Technical & Policy Implications • Atmospheric Composition, Biogeophysical Cycles, and Climate Change • Forest Management and Global Change: Near-Term Decisions and Long-Term Outcomes • Learning from Regions: A Comparative Appraisal of Climate, Water, and Human Interactions in the Columbia and Colorado River Systems • Energy Options and Paths to Climate Stabilization • Climate Scenarios and Projections: the Known, the Unknown, and the Unknowable as applied to California • Aerosols and the Hydrological Cycle • Abrupt Climate Change: Mechanisms, Early Warning Signs, Impacts, and Economic Analyses • North American Weather and Climate Extremes: Progress in Monitoring and Research • Biodiversity in a Changing Climate: Assessing Uncertainties • Earth Systems Models: The Next Generation • Exploring the Boundaries of Nature: A Reflective Dialogue on the Environment • Weather and Climate Extremes in a Changing Climate • Northern Eurasia Land surface Properties and Change and its Role in the Global Earth System • Climate Prediction to 2030: Is it possible, what are the scientific issues, and how would those predictions be used? • Managing the Cycles of Nitrogen and Phosphorus: Mitigation and Adaptation • Advanced Climate Modeling and Decision-Making Support of Climate Services • State of the Global Phosphorus Cycle • Global Change and the Solar-Terrestrial Environment • Making Sense of the multi-model decadal prediction experiments from CMIP5 • Informing a Forest Health Index and Bioclimatic Monitoring Network for the Roaring Fork Valley • Climate Sensitivity on Decadal to Century Timescales: Implications for Civilization • Science for Climate Change Adaptation: Enhancing Decision-Support Capability • Next generation climate change experiments needed to advance knowledge and for assessment of CMIP6 • Adaptation to climate change in mountain & coastal areas: a transatlantic dialogue • Pathways for Climate Solutions: Assessing Energy Technology and Policy Innovation • Experimental design for CMIP6: Aerosol, land use, and future scenarios • Frontiers of Global Change Science
Our Tasks in Q1-5

1. Your career
2. Global change research: advances, impediments
3. Evolving societal needs
4. Future challenges for research
5. AGCI’s role
WCRP Grand Challenges

- Clouds, circulation and climate sensitivity
- Changes in cryosphere
- Climate extremes
- Regional climate information
- Regional sea-level rise
- Water availability
Future Earth Initiatives

- Exploring nitrogen in Future Earth
- Scientific support for IPBES knowledge generation
- What is urban? Global urbanization as viewed from multiple scientific domains
- Bright spots: seeds of a good Anthropocene
- Global biodiversity monitoring, prediction and reporting
- Extreme events and environments from climate to society
- Linking earth system and socio-economic models to predict and manage changes in land use and biodiversity
- Sustainability for water, food and energy through integrated water information and improved governance
Future Earth Initiatives

• Exploring nitrogen in Future Earth
• Scientific support for IPBES knowledge generation
• What is urban? Global urbanization as viewed from multiple scientific domains
• **Bright spots: seeds of a good Anthropocene**
• Global biodiversity monitoring, prediction and reporting
• Extreme events and environments from climate to society
• Linking earth system and socio-economic models to predict and manage changes in land use and biodiversity
• Sustainability for water, food and energy through integrated water information and improved governance
Workshop Outcomes & Products

• Learning and ambassadorship
• Working groups synthesis reporting
 – Questions 2, 3, 4
• Publications – open to what transpires this week
Some ideas for Q4

• How do humans individually and collectively make decisions at different spatial and temporal scales?
• What informs partitioning of investment for adaptation and mitigation?
• What are the key gaps in understanding thresholds in social and natural systems?
AGCI Human Dimensions Working Group 1991

• Chaired by Harold Jacobson and Bill Kuhn
 – Working group:
 • Urs Lutebacher
- 1991 Diversitas
- 1996 IHDP
- 2012 Future Earth
Funding

Interdisciplinary Science Workshops

Research & Consulting

Education & Public Outreach

Sponsored Projects

Additional support:
- Aspen Glow Foundation
- New-Land Foundation
- Sopris Foundation
- Individual contributions

& Other Private Foundations
Welcome to Aspen!
Thank you for coming.
Deeper understanding of:

• key processes in human and social systems
• thresholds in biological, social, physical systems
• interconnections affecting feedbacks and potential surprise
• decision support on what we already know matters
• decision support appropriate to spatial and temporal scales of impacts & user need