The Future of Integrated Assessment Modeling

JAE EDMONDS

Frontiers of Global Change Science
Aspen Global Change Institute
Aspen, CO

18 August 2014
Integrated Assessment Models (IAMs)

IAMs integrate human and physical Earth system climate science.

- IAMs capture interactions between complex and highly nonlinear systems. IAMs provide insights that would be otherwise unavailable from disciplinary research.
- IAMs provide other climate scientists with information about human systems such as GHG emissions, land use and land cover, but increasingly other features such as demographics, technology, and income.

IAMs provide science-based decision support tools.

- IAMs support national, international, regional, and private-sector decisions.
IAMs come in three sizes: DICE, Medium and RCP-class

- DICE Class models are highly aggregated, have a relatively small number of equations, and were originally built to address climate change as a cost-benefit problem.
RCP-class

RCP-class models were built to better understand human-system interactions with the larger biogeophysical and biogeochemical world.

- Provide all of the information that state-of-the-art physical Earth system models need as drivers (GHGs, SLS, LU, LC).
- They are built by interdisciplinary teams and contained detailed process representation of the physical world, e.g. water balance model, graded wind resources, population distribution, buildings, etc.
- Physical system models that range from simple highly parameterized models such as MAGICC to state-of-the-art Earth system models such as CESM.
- Explicit representations of technologies.
- They have been the workhorses for community scenario development and analysis of emissions mitigation.
- Beginning to incorporate climate impacts and adaptation for specific systems, e.g. agriculture, water, forestry, buildings energy.
A traditional role of IAMs has been a source of information about anthropogenic emissions and emissions mitigation.

Global GHG Emissions

Sources: IPCC AR5.
But IAMs are moving to provide information to a broader climate science community with 5 new reference scenarios designed around the needs of the IAV community—and much of it designed here at the AGCI.

After Moss, Edmonds, et al. (2010)
Growing overlap in climate research communities
IAMs are moving to address new problems

U.S. emphasis on five themes

- Impacts, Adaptation & Vulnerability
- Regional Scales & Shorter Time Steps
- Linking to and Collaborating with Other Climate Sciences
- Energy, Technology, Water, & Land
- Evaluating Risk & Scientific Uncertainty, and Exploration of New Methodologies

Many of the cutting edge developments for IAMs feature advances in more than one of these domains.
GCAM’S FUTURE DIRECTIONS
GCAM Is Rapidly Evolving

GCAM has evolved to become a modeling system with multiple interoperable modules, temporal and spatial scales, and modes of application in response to evolving challenges.

Tackling new problems such as climate impacts on the energy-water-land nexus means that GCAM has evolved to:

- Employ high-resolution data inputs,
- Reconcile and transform data to appropriate analytical scales,
- Employ interoperable modules and models, and
- Produce output products, at appropriate space, time, sectoral, and technological resolutions.
GCAM is a Multi-scale Model With Adaptive Resolution

- 32 Energy Economy Regions
- 283 Land Regions
- 233 Water Basins
- 50-State Energy Economy Regions
- Grid-Level Water, Energy, Land, and Emissions
GCAM land cover decisions occur at 283 region resolution, but results are available at 0.05° resolution.

- Economic decisions about land are made at a 283 region resolution globally (9 regions in the USA).
- However, land cover data is output at 0.05° x 0.05° resolution.
- Transition from economic regions to spatial scale considers factors like proximity to existing agricultural areas and conversion types.
- We are expanding this modeling to include land suitability and protected lands.

GCAM ENERGY, AGRICULTURE AND LAND USE
Regional and ‘Local’ Climate Change Feedbacks on Energy

Climate Impacts on Building Energy Use

Fixed Climate

A2 Climate

Every state produces and consumes electricity according to the usual drivers (population, GDP, technology, etc.)

There is a set of regional markets based on NEMS, and states can trade electricity within their markets.

Trade between markets can be fixed at base year levels or loosened up to roughly approximate the effects of increased transmission capacity, market changes, etc.

GCAM still provides additional global constraints and context.
The carbon policy has the largest influence on electricity mix. Future GDP has a large effect on total supply/demand. Trade also important in certain states.
Hydrology using climate model outputs to assess stream-flow, river routing, and river management to assess energy system impacts

GCAM ENERGY, LAND AND WATER
How do growing demands & changes in water supply from climate change affect water scarcity?

Experiments are now under way in which GCAM doesn’t just report scarcity, but produces scenarios in which scarcity has implications for human activities.

Coupling GCAM human systems (energy & land use) to CESM

IESM
The iESM Model Components

CESM (Biophysical Earth System)

CAM (Atmosphere)

CLM (Land)

GLM (Land)

GCAM (Human Systems)

CO₂ Concentration, Climate Forcing

Fossil fuel and industrial emissions (GHGs, SLS, aerosols)

Land use, land cover

Climatic Effects on Carbon Stocks and Crop Yields
Three iESM Experiments to test implications of two-way coupling—does it matter?

▶ Experiment 1—Two-way terrestrial system coupling
(Are energy and/or land-use systems different under two-way terrestrial system coupling?)

- **Experiment**: Run a coupled GCAM-CESM system with RCP 4.5 carbon tax and compare the coupled and uncoupled outputs.

- **Scientific insight**: *Coupling terrestrial systems is harder than it looks. The CMIP5 method employed by the CESM contained errors requiring new methods and code to address.*

- **Scientific insight**: **PRELIMINARY RESULT** *The RCP 4.5 terrestrial carbon cycle is different with 2-way coupling, with more bioenergy, lower crop prices, and redistributed carbon pools.*

One of the most impressive accomplishments of the project was getting a highly interdisciplinary team of researchers to speak the same language.
The field of integrated assessment modeling is changing rapidly

- IAMs will continue to provide
  - Decision support tools for emissions mitigation analysis of policy, and
  - Drivers for the climate science community

- IAMs will exhibit substantial growth in new areas to address new problems
  - IAV: Both providing the new SSPs, but also being part of IAV research
  - Energy-water-land system interactions,
  - Finer spatial and temporal resolution,
  - Greater interaction between scientific disciplines, and
  - Understanding uncertainty, and risk management.
DISCUSSION
Backup Slides
Three climate research communities

- Integrated Assessment Models (IAMs)
- Physical Earth System Models (ESMs)
- Impacts, Adaptation, and Vulnerability (IAV)

Human systems
Drivers of Climate Change

Physical systems
Climate change

Human systems
Impacts & adaptation
Inputs and Outputs in GCAM

External Inputs to IAMs:
- Population
- Labor Productivity
- Technology
- Policy

The Physical World, e.g. carbon density, crop yields, energy resources

Parameters

Outputs of IAMs:
- Economy
- Agriculture
- Energy
- Land Use
- Carbon Cycle
- Atmosphere
- Water
- Climate

- CO₂, GHGs, aerosols, OGs
- Prices, Taxes, e.g. CO₂
- Commodity Prices
- Economic Activity
- Primary Energy Supply
- Electric & Refining
- Crops & Forests
- Livestock
- Temperature, RF
GCAM also incorporates high resolution input data as appropriate to the problem at hand.

Potential Vegetation

Cropland area

Rainfed area

We also produce reconciled data products in the process of incorporating data into GCAM.
Correlation between crop PFT land cover in the native 2010 MODIS land cover and the 2010 land GCAM RCP 4.5 was $r^2=0.98$.

Correlation between the cropland difference maps representing only those grid cells that changed, was $r^2=0.83$.

The GCAM Global Hydrologic Model

- GCAM has a macroscale global hydrologic model
- Modified River Transport Model scheme
- Simulates runoff and streamflow (1901-2100)
- Requires climate information from GCMs as inputs
- 233 basins globally
- 18 basins in the US consistent with the USGS WRRs
- Monthly temporal scale
- 0.5x0.5 degree spatial resolution

Toward understanding the implications of **climate change impacts** on **water** availability and on **energy and land** decisions in GCAM
How much water do humans demand for energy and food?

- Technologically detailed representation of water demand sectors
- Tracks water demands for several sectors, subsectors, and technologies
- Tracks water demands at various spatial scales (regions, state, agro-ecological zones)
- Tracks both annual withdrawal and consumptive water use
- Endogenously incorporated in GCAM

Global water withdrawal and consumption in a reference scenario with increasing deployment of cooling towers in power generation