WORKSHOP ON RISK & RESILIENCE IN THE FACE OF GLOBAL CHANGE

RISK & RESILIENCE MANAGEMENT IN ADAPTIVE COASTAL SYSTEMS
DECEMBER 3, 2015

KIRK HATFIELD AND HARALD KLAMMLER
UNIVERSITY OF FLORIDA

P. SURESH C. RAID
PURDUE UNIVERSITY
Outline

• Socio-Ecological-Technological Systems Perspective
• Risk and Resilience Challenges from Infrastructure and Climate Change Perspectives
• A Strategy to Navigate Change and Uncertainty
• Modeling Resilience in a Contrived System as an Exercise of Fun and Learning
• Summary/Comments
Urban SETS Perspective

“Society – the reason for urban infrastructure”
Billy Hynes (2015)

• We assume urban areas are comprised of interdependent Socio-Ecological-Technological Systems (SETS)

• Fundamental to managing urban systems is understanding the structure, services, functions, resources, inter-dependencies, and resilience of urban SETS.
Urban SETS Perspective

Potential Components of SETS

<table>
<thead>
<tr>
<th>Social Institutions</th>
<th>Ecosystems</th>
<th>Technology Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family and Kinship</td>
<td>Coastal Beach</td>
<td>Buildings</td>
</tr>
<tr>
<td>Economic</td>
<td>Coastal Wetland/Marsh</td>
<td>Transportation</td>
</tr>
<tr>
<td>Government</td>
<td>Woodland</td>
<td>Communication and Information</td>
</tr>
<tr>
<td>Education</td>
<td>Lake/Wetland/Marsh</td>
<td>Energy</td>
</tr>
<tr>
<td>Community Service Organizations</td>
<td>Riparian watershed</td>
<td>Water and Waste water</td>
</tr>
<tr>
<td>Religious Organizations</td>
<td>Desert</td>
<td>Remote Sensors</td>
</tr>
<tr>
<td>Media</td>
<td>Green Urban Infrastructure</td>
<td>Reactive/Adaptive Control Systems</td>
</tr>
</tbody>
</table>
Cities Face Risk and Resilience Challenges from Several Infrastructure Perspectives

- Infrastructure lives 50 to 100 years
- Right-of-ways and footprints survive > 100 years
- Urban SETS today are highly connected and as a consequence vulnerable to emergent or cascading system failures
- Urban SETS are poorly understood and still poorly monitored
Cities Face Risk and Resilience Challenges from climate change perspectives

• The frequency and intensity of extreme events are increasing for precipitation, heat waves, hurricanes, and winter storms

• Sea level rise 1 to 4 feet by 2100

• Significant uncertainty over the location, magnitude, and rate of climate change

• Climate change uncertainties increase with the planning time horizon

• Climate change uncertainties increase when downscaling to infrastructure or construction scales
Primary Engineering Challenges

• Climate change will be more difficult to estimate at the local scale and for the service life of infrastructure systems
• Infrastructure systems of the future will need to be adaptable
• A new paradigm will be needed for urban risk and resilience engineering – one based on the adaptive management of urban SETS
A Strategy to Navigate Change and Uncertainty

- The adaptive management of services and resources of Urban SETS to facilitate system-wide resilience and the inevitable navigation of system failures.
- The continued analyses of Risk, ROI, and Costs & Benefits to inform decisions; but at:
 - short time scales for local venues; and
 - long time scales over regional areas.
What is Adaptive Capacity?

For urban SETS, the adaptive capacity is the collective intellectual, financial, physical, and technological resources combined with cooperative institutional resources that can be brought to bear on SETS adaptation to changing conditions.

We should invest long-term in building adaptive capacity!
Stages for System Service Loss & Recovery

Francis and Bekera (2014)

An continuous process for building urban adaptive capacity
Infrastructure & Institutions: Coupled Complex Networks

Critical Infrastructure Network

Formal/Informal Institutions

Loss of Services “unemployment” \([\phi(t)]\)

(0 \leq \phi \leq 1)

Stochastic SHOCKS

Adaptive Capacity “community resources” \([\Omega(t)]\)

(0 \leq \Omega \leq 1)

The capacity of a system to self-organize when conditions change

Community resources

\[\Omega(t) \]

\[P(t) \]
Simulated Complex System Dynamics
Scenario 1: Time series
Scenario 1: Phase Portrait

- Cycles of shocks and recoveries
- "Good" basin of attraction
- Basin of attraction to collapse
Scenario 2: “Collapse” from Impacts of an Extreme Event
Resilience Enhancing Strategies: From “Fail-Safe” to “Safe-Fail”

• **Resistance (Reliability/Robustness)**
 – Hardening (increased rigidity)
 – Redundancy (substitution)

• **Adaptations (Flexibility/Diversity)**
 – Re-routing
 – Modularity (Isolation/De-Centralization)
 – Diversity (Alternate service providers)

• **Transformations (Reorganization/Repurpose)**
 – Re-design
 – Re-invent
 – Replace
Summary/Comments

• Resilience depends on one’s perspective
• No agreement exists on resilience terminology & metrics
• Innovation & Diversity are fundamental to flexibility and adaptation and in turn urban resilience
• Resilience is an emergent & stochastic attribute of Urban SETS and not their isolated social-ecological-technical components
• Bad decisions are emergent, stochastic, and unavoidable and analogous to a self-imposed system disturbances or changes that must be navigate
• Increasing urban adaptive capacity fosters urban resilience
• We must invest in building system-wide adaptive capacity for the long term...and resilience will then follow
Invest long-term in Building Adaptive Capacity

As applied to human social systems:

– Invest in the ability of institutions and networks to learn, and store knowledge and experience.
– Invest in creative flexibility in decision making and problem solving
– Invest in power structures that are responsive and consider the needs of all stakeholders
– Promote community-wide savings
– Invest in SETS monitoring
– Invest in education and research...