Giving shape to sustainability
Welcome

Fruit and Vegetable Workshop Aspen
Potential Role of IT in Altering Fruit & Vegetable Food Systems Outcomes

Hans Blonk
Director, Blonk Consultants

Keystone
2 August 2018
Content
Potential Role of IT in Altering Fruit & Vegetable Food Systems Performance

- Why IT tools in F&V value chains?
- What type of IT tools exist or emerge for improving F&V production and consumption systems?
- What is the expected impact of IT tools?
Why IT tools?

Look at the value chain

Cultivation

Transport

Storage

Transport

Processing

Packing

Transport

Storage

Transport

Retail

Foodservice

Transport

Storage

Preparation

Consumption
IT helps to better manage performance in parts of the value chain.
IT at cultivation

More and more data can be made available to support management that improves yields with avoiding unnecessary inputs

- Open field
- Protected cultivation greenhouses
IT at cultivation

- Data are all around but are only valuable if IT generates ready to use feedback that enables growers to act.

- More and more IT tools provided by the private sector.
PLANT EMPOWERMENT: A PLANT PRODUCTION STRATEGY WHERE PHYSIOLOGY MEETS PHYSICS

What is the most sustainable way of growing in my greenhouse, where I convert the available resources to maximum production and quality? During the Greentech a new book will be presented, called Plant Empowerment; the basic principles. In this book extensive methods are explained to give your plants the right energy! Empower your Plants!

Its starting point is the natural behavior of plants related to the greenhouse environment described by six balances concerning energy, water, CO2 and assimilates. Monitoring these balances utilizing sensors, combined with crop measurements in a coherent framework based on physical and plant physiological knowledge and insights, provides hard facts required to control and improve the cultivation process.
IT at cultivation
Example “plant empowerment”

Proven impact
- Increased yield Qty
- Increased plant health → crop quality
- Decrease in energy use (at least 10%)

To be analyzed in coming study
- Carbon footprint
- Water footprint
- Nutrient emissions
- Pesticides impacts

Crucial condition is that grower is owner of data.
However “full value chain performance” is key
New IT tools emerge measuring value chain performance
Two types of IT solutions

1. IT solutions on level of sub systems, to realize better performance on business level
 - Cultivation efficiency and resilience (precision farming)
 - Processing optimization
 - Logistics optimization
 - Applications are mainly built on own data
 - EXAMPLE: PlantpowerModel (Letsgrow)

2. IT solutions on level of composed products, assortments and diets
 - LCA based
 - Combined sustainability performance defines optimal solutions
 - Applications are mainly built on LCA data of supply chain
 - EXAMPLE: Optimeal (Blonk Consultants)
IT on dietary level: Optimeal for sustainable nutrition assessment
Sustainable Nutrition Assessment: the old way reasoning from predefined diets

But:
- Are they nutrient equivalent?
- Are these diets healthy?
- Are they the optimal solution?
Sustainable nutrition assessment: Optimeal®

- Software tool for optimization of diets on nutrition AND sustainability.
- Developed by Blonk Consultants in cooperation with Netherlands Nutrition Centre.
- Defining healthy and sustainable food patterns based on sound data:
 - Baseline diet
 - Data on nutritional and environmental properties of products
 - Dietary constraints
- Optimeal engine uses either linear programming (LP) or quadratic programming (QP) to find the optimal solution to a research question.
Results derived with Optimeal
Optimisation
Examples

1. WWF UK Livewell (2017)

 Eating for 2 degrees – New and updated Livewell Plates

2. NZO (Dutch Dairy Association) (2015)

 Environmental impact of dairy substitution in a healthy diet
Eating for 2 degrees
The Paris agreement

Keep global warming well below 2 degrees

In the UK
Committee on Climate Change advised: reduce territorial emissions by 61% from 1990 levels.

rounded this down to 60%

- 30% through production
- 30% through consumption target: -30% UK food consumption in 2030
Eating for 2 degrees

Main objective

Can we develop Livewell Plates that respect national climate change mitigation commitments and stop deforestation at the same time?

<table>
<thead>
<tr>
<th>Climate change*</th>
<th>1990</th>
<th>current</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total carbon footprint (MtCO₂eq)</td>
<td>152</td>
<td></td>
<td>106.5 (-30%)</td>
</tr>
<tr>
<td>Individual carbon footprint (kg CO₂eq)</td>
<td>7.28</td>
<td>5.17</td>
<td>4.09</td>
</tr>
</tbody>
</table>

* Also targets for land occupation
Eating for 2 degrees
Starting point optimisation

Current diet:
EFSA Comprehensive Food Consumption Database (ECFCD) and National Diet and Nutrition Survey (NDNS)

Nutritional properties of food products:
McCance & Widdowson’s and French Ciqual

Environmental properties of food products:
Life Cycle Assessments (LCAs) by Blonk Consultants

Applying quadratic programming
Nutritional properties

58 implemented

<table>
<thead>
<tr>
<th>Macronutrients</th>
<th>Vitamins and minerals</th>
<th>Amino acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (kcal)</td>
<td>Retinol eq. (μg)</td>
<td>Tryptophan (g)</td>
</tr>
<tr>
<td>Energy (KJ)</td>
<td>Retinol act. eq. (μg)</td>
<td>Threonine (g)</td>
</tr>
<tr>
<td>Protein total (g)</td>
<td>Vitamin B1 (mg)</td>
<td>Isoleucine (g)</td>
</tr>
<tr>
<td>Protein vegetable (g)</td>
<td>Vitamin B2 (mg)</td>
<td>Leucine (g)</td>
</tr>
<tr>
<td>Protein animal (g)</td>
<td>Niacin (mg)</td>
<td>Lysine (g)</td>
</tr>
<tr>
<td>Fat total (g)</td>
<td>Vitamin B6 (mg)</td>
<td>Methionine (g)</td>
</tr>
<tr>
<td>SAFA (g)</td>
<td>Folate eq. (μg)</td>
<td>Cystine (g)</td>
</tr>
<tr>
<td>MUFA (g)</td>
<td>Vitamin B12 (μg)</td>
<td>Valine (g)</td>
</tr>
<tr>
<td>PUFA (g)</td>
<td>Vitamin C (mg)</td>
<td>Histidine (g)</td>
</tr>
<tr>
<td>Linoleic acid (g)</td>
<td>Vitamin D (μg)</td>
<td></td>
</tr>
<tr>
<td>ALA (g)</td>
<td>Vitamin E (mg)</td>
<td></td>
</tr>
<tr>
<td>EPA (g)</td>
<td>Vitamin K total (μg)</td>
<td></td>
</tr>
<tr>
<td>DHA (g)</td>
<td>Vitamin K2 (μg)</td>
<td></td>
</tr>
<tr>
<td>Trans fatty acids (g)</td>
<td>Calcium (mg)</td>
<td></td>
</tr>
<tr>
<td>Fatty acids n-3 (g)</td>
<td>Phosphorus (mg)</td>
<td></td>
</tr>
<tr>
<td>Fatty acids n-6 (g)</td>
<td>Iron (mg)</td>
<td></td>
</tr>
<tr>
<td>Cholesterol (mg)</td>
<td>Haem iron (mg)</td>
<td></td>
</tr>
<tr>
<td>Carbohydrates total (g)</td>
<td>Sodium (mg)</td>
<td></td>
</tr>
<tr>
<td>Mono- and disaccharides (g)</td>
<td>Potassium (mg)</td>
<td></td>
</tr>
<tr>
<td>Lactose (g)</td>
<td>Magnesium (mg)</td>
<td></td>
</tr>
<tr>
<td>Polysaccharides (g)</td>
<td>Zinc (mg)</td>
<td></td>
</tr>
<tr>
<td>DHA+EPA (mg)</td>
<td>Selenium (μg)</td>
<td></td>
</tr>
<tr>
<td>Fibre (g)</td>
<td>Copper (mg)</td>
<td></td>
</tr>
<tr>
<td>Water (g)</td>
<td>Iodine (μg)</td>
<td></td>
</tr>
</tbody>
</table>
LCA data

<table>
<thead>
<tr>
<th>Product</th>
<th>Cradle to End-of-Life</th>
<th>Cradle to Retail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg CO2e/kg incl Land Use Change</td>
<td>kg CO2e/kg door Land Use Change</td>
</tr>
<tr>
<td>alaska pollock fish</td>
<td>9.7</td>
<td>0.1</td>
</tr>
<tr>
<td>apple with skin</td>
<td>0.4</td>
<td>< 0.01</td>
</tr>
<tr>
<td>banana</td>
<td>0.9</td>
<td>< 0.01</td>
</tr>
<tr>
<td>brown beans (glass/can)</td>
<td>1.9</td>
<td>0.0</td>
</tr>
<tr>
<td>brown rice</td>
<td>1.7</td>
<td>< 0.01</td>
</tr>
<tr>
<td>butter (unsalted)</td>
<td>16.3</td>
<td>1.9</td>
</tr>
<tr>
<td>carrots</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>cauliflower</td>
<td>1.4</td>
<td>0.0</td>
</tr>
<tr>
<td>cheese Gouda 48+</td>
<td>12.9</td>
<td>1.5</td>
</tr>
<tr>
<td>chicken (with skin)</td>
<td>13.4</td>
<td>5.6</td>
</tr>
<tr>
<td>cod fish</td>
<td>7.5</td>
<td>0.1</td>
</tr>
<tr>
<td>eggs</td>
<td>5.1</td>
<td>2.1</td>
</tr>
<tr>
<td>herring (soused)</td>
<td>3.0</td>
<td>< 0.01</td>
</tr>
<tr>
<td>mackerel</td>
<td>2.9</td>
<td>< 0.01</td>
</tr>
<tr>
<td>minced beef meat (35% beef content, 65% dairy cattle)</td>
<td>30.7</td>
<td>2.8</td>
</tr>
<tr>
<td>orange</td>
<td>1.1</td>
<td>< 0.01</td>
</tr>
<tr>
<td>pork</td>
<td>14.3</td>
<td>3.2</td>
</tr>
<tr>
<td>potatoes</td>
<td>0.8</td>
<td>< 0.01</td>
</tr>
<tr>
<td>rye bread</td>
<td>1.3</td>
<td>< 0.01</td>
</tr>
<tr>
<td>salmon fillet (aquacultured)</td>
<td>8.0</td>
<td>1.8</td>
</tr>
<tr>
<td>semi-skimmed milk</td>
<td>1.9</td>
<td>0.2</td>
</tr>
<tr>
<td>skimmed milk</td>
<td>1.8</td>
<td>0.2</td>
</tr>
<tr>
<td>steak (100% beef cattle)</td>
<td>57.9</td>
<td>5.0</td>
</tr>
<tr>
<td>tofu</td>
<td>5.8</td>
<td>2.2</td>
</tr>
<tr>
<td>vegetarian burger (avarage)</td>
<td>4.1</td>
<td>1.0</td>
</tr>
<tr>
<td>white bread</td>
<td>1.3</td>
<td>0.0</td>
</tr>
<tr>
<td>white rice</td>
<td>2.0</td>
<td>< 0.01</td>
</tr>
<tr>
<td>whole grain bread</td>
<td>1.1</td>
<td>< 0.01</td>
</tr>
<tr>
<td>whole milk</td>
<td>2.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Eating for 2 degrees
Results adult plate 2030

CURRENT
- Plant protein: 13
- Fruit & vegetables: 299
- Animal protein: 124
- Dairy: 193
- Plant dairy: 3
- Carbohydrate: 302
- Other: 190
- Beverages: 1613

ADULT 2030
- Plant protein: 33
- Fruit & vegetables: 432
- Animal protein: 81
- Dairy: 192
- Plant dairy: 3
- Carbohydrate: 371
- Other: 225
- Beverages: 1603
More plant-based foods: vegetables, wholegrain cereal products, nuts, legumes and vegetable oils

Lower amounts of beef, lamb and other meats
Eating for 2 degrees

Conclusions

Using optimisation:

It is possible to come to robust Livewell plates that respect national climate change mitigation commitments.

The new Livewell plates respect all nutritional boundaries for a healthy diet.
Environmental impact of dairy substitution

The question

Question:

“Does dairy substitution lead to a reduced dietary environmental impact in the Netherlands?”
Environmental impact of dairy substitution

Starting point optimisation

Current diet:
Dutch dietary food consumption survey 2007-2010

Nutritional properties of food products:
Dutch Nutrient table (NEVO)

Environmental properties of food products:
Life Cycle Assessments (LCAs) by Blonk Consultants

Applying stepwise optimisation

Varying dairy products from 0% to 300% of the current diet.

Optimising at every step
Environmental impact of dairy substitution

Results

![Graph showing environmental impact of dairy substitution]

- **nr. of changes (Euclidian distance)**
- **Climate change - with optimisation (kg CO2eq/day)**
- **Climate change - without optimisation (kg CO2eq/day)**

Dairy products (gr milk eq/day)

Euclidian distance

Climate change
Replacing dairy products with alternative products (in the product basket of the current diet) provides little environmental benefit while many changes are needed.

As a source of useful nutrients dairy products are just as environmentally efficient as the products used to replace them.
Conclusion
what is the expected impact?

- IT tools will empower growers to manage productivity and sustainability impact simultaneously
- IT tools will empower public bodies and industries to help defining future proof diets and products

- However what about the consumer
 - Together with WWF UK and Imperial College we started a pilot for developing a consumer app ➔ empowerment of the consumer
- Smart IT solutions emerge everywhere
References

- www.optimeal.nl/news/publications/
Thank you! Any Questions?

Reach out to us!

Hans Blonk
Director Blonk Consultants

www.optimeal.nl | www.blonkconsultants.nl | hans@blonkconsultants.nl
+31-182-579970