IMPACT Modeling of Fruit & Vegetable Crops
Current status and future aspirations

Keith Wiebe
International Food Policy Research Institute

AGCI Workshop on “Innovating global fruit and vegetable food systems to help bring sustainable nutrition security”
Keystone Policy Center, CO
1 August 2018
• What are models for?

• Exploring long-term challenges and opportunities

• A few results

• Future aspirations
Models are simplifications of reality
Models are tools
Balancing production and consumption
Partners in global analysis
Modeling alternative futures for agriculture: biophysical and socioeconomic drivers and effects

Source: Adapted from Nelson et al., Proceedings of the National Academy of Sciences (2014)
IFPRI’s IMPACT system of models

- Linked climate, water, crop and economic models
- 60+ commodities
- Estimates of production, consumption, hunger, and environmental impacts

Source: Robinson et al. (IFPRI, 2015).
Growth in total global commodity demand

Source: IMPACT, June 2017
Changing diets by region

North America
- 2010: 812 (Cereals), 202 (Fruits and Vegetables), 911 (Meat, Dairy, and Eggs)
- 2030: 812 (Cereals), 224 (Fruits and Vegetables), 912 (Meat, Dairy, and Eggs)
- 2050: 808 (Cereals), 228 (Fruits and Vegetables), 914 (Meat, Dairy, and Eggs)

South Asia
- 2010: 1,363 (Cereals), 105 (Fruits and Vegetables), 156 (Meat, Dairy, and Eggs)
- 2030: 1,377 (Cereals), 189 (Fruits and Vegetables), 212 (Meat, Dairy, and Eggs)
- 2050: 1,403 (Cereals), 329 (Fruits and Vegetables), 247 (Meat, Dairy, and Eggs)

Sub-Saharan Africa
- 2010: 1,067 (Cereals), 154 (Fruits and Vegetables), 142 (Meat, Dairy, and Eggs)
- 2030: 1,137 (Cereals), 204 (Fruits and Vegetables), 178 (Meat, Dairy, and Eggs)
- 2050: 1,181 (Cereals), 266 (Fruits and Vegetables), 243 (Meat, Dairy, and Eggs)

PER CAPITA CALORIES

NOTES: Other food groups have been omitted. Numbers do not reflect climate change impacts, which would lower these projections. For more info please visit https://gfpr.ifpri.info/

Climate change impacts on yields
an example for rainfed maize in 2050

Maximum temperature (°C)

Annual precipitation (mm)

Change in rainfed maize yields before economic adjustments

Change in rainfed maize yields after economic adjustments

Source: IFPRI (2015). Note: Results for rainfed maize using HadGEM, RCP 8.5, DSSAT, IMPACT version 3.2, and SSP 2.
Climate effects on rainfed F&V yields in 2050 RCP8.5 – HGEM compared to No Climate Change

WLD = World; EAP = East Asia and Pacific; EUR = Europe; FSU = Former Soviet Union; LAC = Latin America and Caribbean; MEN = Middle East and North Africa; NAM = North America; SAS = South Asia; SSA = Sub-Saharan Africa;

Source: IFPRI, IMPACT version 3.2
Increasing trade movement of F&V

RCP8.5 – HGEM

Net Trade (mmt)

Source: IFPRI, IMPACT version 3.2

WLD = World; EAP = East Asia and Pacific; EUR = Europe; FSU = Former Soviet Union; LAC = Latin America and Caribbean; MEN = Middle East and North Africa; NAM = North America; SAS = South Asia; SSA = Sub-Saharan Africa;

Source: IFPRI, IMPACT version 3.2
Per capita F&V consumption improving to 2050

RCP8.5 – HGEM

2010

- South Asia seeing significant advancement
- SSA and LAC still lagging behind, though some countries seeing improvement

2050

WHO target = 400 g/day

Source: IFPRI, IMPACT version 3.2
Current work related to F&V, diets and health

- Improved modeling of selected fruits and vegetables in the US (with WSU and others)

- Exploring nutrient availability and adequacy ratios (with Jerry Nelson and others)

- Exploring climate change effects on nutrient content (with ARS and others)

- Comparing F&V demand with WHO recommendations (with CSIRO)

- Exploring health implications of changing diets (with Oxford University)
Future aspirations?

• Improved coverage of high-value foods
 – F&V
 – Animal-source foods

• Improved modeling of health and environmental impacts

• Expanded partnerships
 – Model improvement and linkages
 – Collaborative research
 – Informing decision-making
Thank you