CIVILIAN POWER FROM SPACE IN THE EARLY 21ST CENTURY: Technologies, Paths and Implications

Prepared by Dr. Lowell Wood {University of California Lawrence Livermore National Laboratory, Livermore CA 94551-0808, and Hoover Institution, Stanford University, Stanford CA 94305-6010; (925) 422-7286 [voice]; (925) 423-1243 [fax]; lowellwood@comcast.net}, in collaboration with Drs. Roderick Hyde and Muriel Ishikawa, for discussions at the Energy Options And Paths To Climate Stabilization Workshop at the Aspen Global Change Institute, Aspen CO, 6-11 July 2003, sponsored by the U.S. Department of Energy.

Opinions expressed herein are – at most – those of the authors only.
WHY-&-HOW DO YOU GET POWER-FROM-SPACE?

♦ WHY?
 – Because you don’t like getting it from terrestrial sources
 • Generation and/or transport ‘side-effects’ are deemed tedious
 – Because space-derived power looks more attractive
 • A presently-preferred profile of the various cost-types
 – “The grass is always greener…” syndrome?
 – There’s lots of it out there – and it’s all free, forever
 • We only use \(~10^{-4}\) of the sunlight falling right on the Earth

♦ HOW?
 – With a long extension cord – made of ‘jiggled ether’…
 • Electromagnetic radiation beams – shafts of polarized vacuum
 – …connecting Earthside loads to…
 • Power stations-in-Earth orbit!
 – Getting their energy from…
 • Nuclear (fission, now; fusion, later) reactors?
 • Solar photovoltaic arrays (PVAs)? [Peter Glaser, ~1978]
WHY NOT?

- After all, the basic idea’s a quarter-century old…
 …and we’ve been orbiting things for a half-century..
 …and technology has never been advancing faster…
 …and we’ve never been as wealthy as at present…

- **BUT** the proposed classic ‘first step’ is a dilly
 - $> 10 \text{ km}^2$ arrays of microwave radiators in GEO
 - $> 10 \text{ km}^2$ arrays of microwave rectennae Earthside
 - Multi-GWe stations are smallest-economically-practical
 - *Proponent*-estimated “switch-on cost” of $N \times 10^{10}$, $N \gg 1$
 - These are “Only really big-&-rich governments need apply” scales

- U.S. Government becomes ever-more-modest about its abilities to **accomplish** any big new things in space
 - “He’s a modest man, with much to be modest about.”

- Thus, ~25 years later, this remains “a bridge too far”
 - No key feature is becoming easier, cheaper, safer,…
WHAT’S TO BE DONE?

- Replace the thus-far-show-stopping features
 - Systematically re-engineer all problematic features
 - Too big-&-costly? Trim by required factors!
 - E.g., by invoking physics-&-technology alternatives
 - E.g., by leveraging new, mass-market technologies
 - E.g., GPS, Internet/GDN, automated transaction-clearing,…
 - USG hesitancy? Make attractive to private sector!
 - Has to happen eventually (at least in the U.S.A.)
 - USG didn’t elect to pursue the TVA & BPA models
 - Current policy-trend is to fully-liberalize energy markets
 - Why not sooner-than-later?
 - Figure out if the ‘minimum Governmental lead-in’ can be stretched to meet what the USG may do anyway
 - E.g., can technology-legacies of mil-space efforts be re-engineered to “do the job” re power-station-prototyping?
 - Can future USG requirements be met with space power station capabilities to telling extents?
 - USG as ‘anchor tenant’ of nascent space power station(s) or ‘salvage buyer’ of their (surplus) outputs?
HOW’S THIS TO BE DONE? I.

- Modernize PVA choice: Slash prime-mover’s mass
 - *Mass*-in-space is *cost*-in-space, for very nearly everything
 - Crystalline Si was baselined – “That was then;…”
 - 4-mil slabs – 100 µm thickness of Si
 - But now-COTS a-Si is *far* more mass- (hence cost-)efficient
 - 0.3 µm a-Si, on 5 µm plastic-film (40X lower areal mass)
 - a-Si is now the Earthside *market*-dominating COTS solar PVA technology
 - >0.5 the sunlight-to-DC conversion efficiency:>20X power-to-mass
 - Space-performance-proven on MIR’s *Kvant* module, for 18 months
 - Mass- & dollar-budget-gains are of *logjam-breaking magnitudes*

- Shrink the transmitter/receiver sizes – *drastically*
 - Chop projected beam’s wavelength: the *only* (physics) alternative
 - Go from *λ* of 2-12 cm (µwave) to <0.0001 cm (near-optical)
 - T/R antennae areas *each* shrink by *λ*-ratio: ~10⁵ X (!!!)
 - 10 square kilometers ⇒ 100 square meters (if T&R are symmetric)
 - Pick in-GEO transmitter area of 10,000 m²: receiver’s is ~1 m² (!!)
 - Improvements in T/R areas are of *fundamental* importance
 - Associated cost reductions are crucial enough
 - But scale-size reduction is enabling for getting *there* from *here!*
HOW’S THIS TO BE DONE? II.

♦ Issues-&-alternatives

– Minimize power-station’s $/W: the fundamental FoM
 • Optical-vs.-μwave ~ 2X inferiority in DC ⇒ AC is minor concern
 • More than offset by
 – a-Si’s >20X advantage in power/mass efficiency
 – Huge T/R area-reductions enabled by optical waveband transmission

– Minimize the initial power-station size
 • Big beam-projectors are ~ N meters diameter, N the transmitter-receiver range in thousands of km
 – 1-2 meters is the practical range for LEO power stations
 • Thus may have LEO constellations of sub-tonne power-stations

– Generate and project optical-wavelength photon beams
 • Use laser diodes to optically pump fiber-lasers
 – Leverages 2 decades’ advances in huge telecommunications tech-base
 – Allows areally-distributed (not point-concentrated) entropy rejection
 • Use large-area Fresnel lens main beam-projectors
 – Low areal-mass technology: Lens is thin, flat, polyimide film
 • ~10 gm/m² asymptotic mass-budgets
 – Far looser tolerances than reflectors: e.g., tolerates ~10⁴X surface errors
HOW’S THIS TO BE DONE? III.

- Issues-&-alternatives, cont’d
 - (Finely) partition the power station’s transmitted beam
 - Radiate many lower-beams through one shared primary projector
 - More leveraging of far-shorter transmission wavelength
 - Servicing many small customers, rather than just one mega-customer
 - Readily done: PVA’s optical fiber ‘power-harvesting’ network
 - Send these myriad beams in different directions all over the field-of-regard, each to a distinct Earthside receiver
 - Thereby servicing a continent-sized area of receivers…
 - Eliminating all transmission and distribution costs of POES (cf. ‘POTS’)
 - ..at different power levels, for different dwell-durations,…
 - Leveraging the differentially-pumped laser-diode modules on PVA…
 - …as well as individually-steered beamlet-lensette modules in the focal plane of the station’s primary projector
 - ~3-30X sunlight intensities likely hit ‘sweet spot’ of mass markets
 - ~2.5-25 kWe/m² of customer’s receiver (≥60% receive-efficiency)
 - Beams’ ‘soft edges’ and real-time closed power-loops assure safety
 - Beams’ perimeter intensity-meters & ‘coding’ foil defeat-attempts
 - ..energizing myriad loads, just-as-ordered: **spacetime beam-agility**
 - Purchasing done in real-time, via the Internet/Global Digital Network
 - Tiny comm-&-Xaction costs: c < $10⁻¹⁰/bit, world-wide; -c’>2X/yr.
 - To GPS-cued \{x,v,a,θ,ϕ\} precision locations/motions/orientations
 - Thus enabling precision servicing of moving customer-receivers
 - *No* major prime mover-type goes unserviced by space powerbeams!
Typical Values

\[\lambda: \quad 0.0000008 \text{ m} \]
\[R: \quad 4,000,000 \text{ m} \]
\[L: \quad 35,000,000 \text{ m} \]
\[D_T: \quad 300 \text{ m} \]
\[D_R: \quad 0.4 \text{ m} \]
\[\text{F.L.:} \quad 3,000 \text{ m} \]

\[D_T D_R \geq 4 \lambda L \]
\[A_T A_R \geq \pi^2 \lambda^2 L^2 \]
\[R \sim 0.1 L \]
\[\frac{r}{R} = \frac{\text{F.L.}}{L} \]
HOW’S THIS TO BE DONE? IV.

† Issues-&-alternatives, cont’d.
 – Leverage upcoming advances in space-transport costs
 • ‘Space tugs’ using big solar PVAs and COTS plasma-jet engines
 – ‘Motor around’ cislunar space at milligee acceleration-levels
 • “From anywhere to anywhere” in a matter of weeks
 • No more expensive to transit from Earthside-to-GEO than from Earthside-to-LEO
 – ‘Overhead’: 5-10% of payload mass, used as 7000-3500 sec I_{sp} jet-mass
 – Vs. ~3-4X more expensive ‘classically’: GTO-insertion-&-apogee-kick
 • Big economic ‘win’
 – On top of ~2X gain in costs-to-LEO (current space-launch ‘glut’)
 – Maximize use of lunar materials-as-available
 • Likely 3-10X cheaper-in-GEO than Earth-sourced equivalents
 – For Mg, Al, Si, Ti, Fe – and O; possibly for H, C & N, as well
 • Feedstocks for in-orbit robotic manufacturing plants
 – E.g., for making PVAs; low-fractional-mass ‘smarts’ come up from Earthside
WHY NOT PROCEED? I.

- Economics are daunting
 - Start-up ones are completely show-stopping
 • Huge amounts of technology development/demonstration required
 • USG is only likely performer
 – But may well perform, for its own purposes, in the coming decade
 - Initial system economics are sharply challenging
 • Market-required ROIs are huge: 30-40% per annum
 – Risk discounts are necessarily huge
 • Limits on initial capital investment dictates system/orbital design
 – Place power-stations in LEO, not GEO
 • Shorter range permits smaller, 1st-generation transmitters
 • Need constellation of power-stations to assure customer coverage
 – Start with small (sub-tonne) power-stations: Servicing few customers
 • More (or larger) power-stations are added as customer-base grows
 - Full-sized, mature system economics ‘look sweet’
 • But so did the “square miles of microwave antennae” ones
 • Maturity and scale advantages are huge
 – Customers are ‘always there’
 – Capital market-required ROIs are down to ~10-15% per year
 - Crucial issue: how to survive ‘infant’ & ‘youth’ periods
 • It’s simply idle to “wish them away”
 • Must be able to survive ‘birth’ and bootstrap up to ‘adulthood’
WHY NOT PROCEED? II.

- Meteorology?
 - Water droplets (fog, clouds, rain) get in the beam’s way
 - All beam-types; some suffer more than others…
 - Classic responses
 - Beam-around patchy obscuration (many stations in all skies)
 - Punch-through thin, wall-to-wall obscuration ($\tau \leq 3$)
 - Work-around really thick, wall-to-wall stuff (ground reserves)
 - Thunderstorm-centers: ~10 hours/year, in most (U.S.) places
 - Live with such outages: Like ‘standard’ electrical utilities do
 - E.g., rely on Earthside ‘baseload’ system, via price-rationing

- Safety?
 - Ground-level issues
 - Injuries precluded by intensity-sensors on receivers’ perimeters
 - Leveraging physics features of beams’ “soft edges”
 - Receiver’s computer must be ‘happy’ at all times, re all conditions
 - Ditto for power-station’s computer, re each-&-every powerbeam
 - Receiver must ‘echo unknown song’ encoded on its power-beam to the power-station, continually – or the beam goes off instantly
 - System fails-safe by design if beam-control loop isn’t actively closed
 - E.g., any comm failure cuts beam’s power at lightspeed: 0.2 sec.
 - Issues at altitude
 - Injuries precluded by varying-intensity sensors at beam’s receiver
 - ‘Fast flyers’ pass through highest-intensity beams ‘without knowing it’
 - Birds not burned by any time-intensity flight-history
EXEMPLARY SYSTEMS

- **Near-term (first-generation)**
 - Customers
 - Small set (100s at any time) willing to pay premium (~$10/kW-hr)
 - Each needs small (≤10 kW) amounts of power, but located far off-grid
 - LEO-based system
 - Short-range dictated by use of small (~2 meter) beam-projectors
 - LEO constellation of ~250 power-stations
 - Each uses 50 kWe from 300 m² PVAs to project single 20 kW beams
 - Constellation of ~80 kg power-stations launched on single EELV
 - Economics
 - Deliver 0.62 MWe at ~$10/kW-hr: generate ~$55 M/yr. of revenue
 - 30% annual return on $180 M investment ($90 M launch; $90 M fab)

- **Far-term (a few decades out)**
 - Customers
 - Large set (50 M) paying low rates (~$0.05/kW-hr)
 - Need small (~10 kW) amounts of power, delivered wherever they are
 - GEO-based system
 - Long-range demands use of large (~300 meter) beam-projector
 - Constellation of ~1000 power-stations to service a continent
 - Each uses 5 GWe, 20 km² PVAs to project many beams (~50,000 @ 40 kW each)
 - Each station has ~1500 ton (mostly PVA) mass; ~90% from lunar materials
 - Economics
 - Each station delivers 1 GWe at $0.05/kW-hr: ~300 M$/yr of net revenue
 - 15% annual return on $2 B investment ($0.5 B launch; $1.5 B fab)
SUMMARY

- **Big** changes are required, in order to ‘move out’ on large-scale power supply from space
 - Basic challenge is economic: must make commercial sense
 - Eventual, mature system-set looks great
 - Provides non-hydrocarbon-based energy from GEO directly to users
 - Wherewhen & as-much-as desired: ubiquitous utility-grade power
 - Economically viable: Service large, non-baseload market
 - Locally-delivered (mobile!) energy commands price-premium
 - Mature systems/technologies attract low ROI-demanding investors
 - Getting **there** from **here** (i.e., zero) remains the crucial challenge
 - First-step capital-investment must be affordable: 10s of B$ are not!
 - New system/technology is risky: investors always demand high ROIs
 - Start by servicing small set of high $/kW-hr customers; then bootstrap up

- Recent technology advances offer titanic leverage, e.g.,
 - High W/gm a-Si PVAs: greatly cuts system mass (cost)
 - Allows system to sell power at economically-viable $/kW-hr
 - Optical power transmission: drastically cuts T/R sizes
 - Allows smaller-scale power-stations (cutting initial investments)
 - Allows sales to small (mobile!) end-users: not just mega-users

- Near-term USG programs **may** provide crucial tech-bases
 - In-space tech-demos/uses; technology legacies “for free”?

- Hydrocarbon energy economy **may** recede ‘naturally’
 - *Technology-enabled market forces* – vs. government decrees