Integrated Modeling of Carbon Management Technologies for Electric Power Systems

Edward S. Rubin and Anand B. Rao
Department of Engineering & Public Policy
Carnegie Mellon University

Aspen Global Change Institute
July 24, 2000
Some Questions to be Addressed

- What carbon management technologies may be used in a particular application (e.g., existing vs. new plants)?
- What are the key parameters that affect the performance, emissions, and cost of a given option?
- How do the alternative options compare in terms of performance, reliability, and cost?
- What are the uncertainties and technological risks of different carbon management options?
- What are the priorities and benefits of R&D to reduce key uncertainties in new process designs?
Scope and Objectives

- Identify potential options for power generation with carbon capture and sequestration, suitable for, (a) existing plants, and (b) new plants
- Develop a model to quantify performance, emissions, and cost of alternative options, and their dependency on key plant and technology design parameters, operating parameters, and carbon management methods
- Characterize uncertainty in key parameters of the carbon management system
- Integrate carbon management technologies with other plant environmental control systems
- Conduct case studies to illustrate model applications
Current Applications

- **Enhanced oil recovery (EOR)**
 - Dow MEA (Some plants in TX and NM, now shut down)
 - Common in 1970s and 1980s (100-1200 tons CO₂/d)
- **Fertilizer industry**
 - H₂ and CO₂ separation ⇒ Urea production
 - Dow MEA (Indo Gulf Fertilizer Co.) - 150 tons CO₂/d
- **Carbonation of brine (soda ash)**
 - Kerr-McGee MEA (North American Chemical Co., operational since 1978) - 800 tons CO₂/d
- **Food-grade**
 - Fluor Daniel / Dow MEA (Northeast Energy Associates, MA) - 320 tons CO₂/d
- **Commercial CO₂ capture and sequestration facility**
 - Injection into deep saline aquifer (Sleipner West gas field, Norway, installed in 1996) - ~3000 tons CO₂/d
Power Generation Options Using Fossil Fuels

Power Generation Technologies

Fuel
- Coal
 - Combustion-based
 - Gasification-based
- Gas
 - Direct Combustion
 - Gas Reforming

Oxidant
- Air
- Pure Oxygen

Technology
- Simple Cycle
 - Pulverized Coal
 - Gas Turbines
- Combined Cycle
 - Gas Turbines
 - Coal Gasification
 - Fuel Cells
 - Other
CO₂ Capture Technologies

CO₂ Separation and Capture

 Absorption
 Chemical
 MEA
 Caustic
 Other
 Physical
 Selexol
 Rectisol
 Other

 Adsorption
 Adsorber Beds
 Alumina
 Zeolite
 Activated C
 Regeneration Method
 Pressure Swing
 Temperature Swing
 Washing

 Cryogenics

 Membranes
 Gas Separation
 Polyphenylenoxide
 Polydimethylsiloxane
 Gas Absorption
 Polypropelene
 Ceramic Based Systems

 Microbial/Algal Systems
CO₂ Sequestration Options

CO₂ Disposal / Storage Options

- **Geological Sequestration**
 - Deep Saline Reservoirs
 - Exhausted Oil and Gas Wells
 - Abandoned Coal Seams

- **Ocean Sequestration**
 - Very Deep Ocean Injection
 - Unconfined Release (@ ~ 1000 m)
 - Dense Plume Formation (shallow)
 - Dry Ice Injection

- **Biological Sequestration**
 - Forests and Terrestrial Systems
 - Marine Alga

- **Other Methods**
 - Storage as a solid in an Insulated Repository
 - Utilization Schemes (e.g. Polymerization)
Modeling Framework for Carbon Management Options

- **Power Generation**
 - Coal or Natural Gas
 - Air or Pure O₂

- **CO₂ Capture**
 - Absorption
 - Adsorption
 - Cryogenics
 - Membranes

- **CO₂ Transport**
 - Pipeline
 - Other

- **CO₂ Storage or Disposal**
 - Deep Saline Reservoirs
 - Oil and Gas Wells
 - Deep Coal Seams
 - Oceans
 - Byproduct Utilization

Simple Cycle
Combined Cycle
Energy Considerations

- Total Energy Requirement
- Process Heat
- Compression
- Transport
- Storage/Disposal

Important Factors:
- Gas Stream Flow and Composition
- Choice of CO₂ Capture Technology
- Desired CO₂ Capture Efficiency
- Process Parameters
- Desired CO₂ Product Specifications
- Mode of Transport
- Transportation Distance
- Choice of Disposal Method

~ 60-80% cost of separation & capture
Current Status

- Developed preliminary models (performance, emissions, and cost) for several CO\textsubscript{2} capture options, CO\textsubscript{2} transport options, and CO\textsubscript{2} storage options.
- Initial focus on modeling of current commercial technologies (amine scrubbing systems) for combustion-based power systems.
- Integrated the new CO\textsubscript{2} module with the IECM combustion-based power plant model developed for the USDOE.
Integrated Environmental Control Model (IECM)

Coal Cleaning

Combustion Controls

Flue Gas Cleanup & Waste Management

- NOx Removal
- Particulate Removal
- SO2 Removal
- Combined SOx/NOx Removal
- Advanced Particulate Removal
Objectives

- Develop a comprehensive modeling framework to estimate the performance, environmental emissions, and cost of coal-based power generation technologies

- Develop a method for comparing alternative options on a systematic basis, including the effects of uncertainty
Probabilistic Software Capability

- Allows you to specify parameter values as distribution functions, as well as conventional deterministic (point) estimates
- Allows you to explicitly quantify the effects of uncertainty in performance, emissions, and cost, yielding confidence intervals for uncertain results
Conventional Process Modeling (Deterministic Simulation)
Parameter Uncertainty Distributions

- **NORMAL**
- **UNIFORM**
- **LOGNORMAL**
- **TRIANGULAR**
- **BETA**
- **FRACTILE**
Stochastic Simulation

Parameter Uncertainty Distributions → Stochastic Modeler → Results

SAMPLING LOOP

Process Model
Expert Judgments on Key Model Parameters

- Sorbent Sulfur Loading
- Gasifier Fines Carryover
- Carbon Retention in Bottom Ash

![Probability Density](image-url)

- Sorbent Sulfur Loading, wt-%
- Fines Carryover, % of coal feed
- Carbon Retention in Bottom Ash, % of coal feed carbon
Total Plant Capital Cost

Cumulative Probability

Total Capital Requirement ($1994/kW)

Probabilistic

DOE (1989)

524 MW net
Value of Targeted Research

Input Uncertainty Assumptions
- Base Case Uncertainties
- Reduced Uncertainties in Selected Performance and Cost Parameters

Cumulative Probability

Levelized Cost of Electricity, Constant 1989 mills/kWh
Probabilistic Comparison of Competing Technologies

The graph shows the cumulative probability of total cost savings relative to baseline technology (S/MWh). The x-axis represents the total cost savings, while the y-axis shows the cumulative probability. Two technologies, A and B, are compared, with Technology B generally offering a higher cumulative probability for higher cost savings.
The IECM is Available for Downloading

- **Web Access:**
Preliminary IECM User Group

- ABB Power Plant Control
- American Electric Power
- Consol, Inc.
- Energy & Env. Research Corp.
- Exportech Company, Inc.
- FirstEnergy Corp.
- FLS Miljo A/S
- Foster Wheeler Development Corp.
- Lehigh University
- Lower Colorado River Authority
- McDermott Technology, Inc.
- Mitsui Babcock Energy LTD.
- National Power Plc.
- Niksa Energy Associates
- Pacific Corp.
- Pennsylvania Electric Association
- Potomac Electric Power Co.
- Savvy Engineering
- Sierra Pacific Power Co.
- Southern Company Services, Inc.
- Stone & Webster Engineering Corp.
- Tampa Electric Co.
- University of California, Berkeley
- US Environmental Protection Agency
Configure Plant

Combustion Controls
- **Furnace Type:** Tangential
- **NOx Control:** Low NOx Burners

Post-Combustion Controls
- **NOx Control:** Hot-Side SCR
- **Particulates:** None
- **SO2 Control:** None
- **SO2/NOx:** None

Solids Management
- **Recovery:** None
- **Fly Ash Disposal:** mixed w/ Landfill
Combustion Controls
- **Furnace Type:** Tangential
- **NOx Control:** Low NOx Burners

Post-Combustion Controls
- **NOx Control:** Hot-Side SCR
- **Particulates:** Cold-Side ESP
- **SO2 Control:** None
- **SO2/NOx:** None

Solids Management
- **Recovery:** None
- **Fly Ash Disposal:** mixed w/ Landfill
Combustion Controls

- **Furnace Type:** Tangential
- **NOx Control:** Low NOx Burners

Post-Combustion Controls

- **NOx Control:** Hot-Side SCR
- **Particulates:** Cold-Side ESP
- **SO2 Control:** Wet FGD
- **SO2/NOx:** None

Solids Management

- **Recovery:** None
- **Fly Ash Disposal:** mixed w/ Landfill
Combustion Controls

- **Furnace Type:** Tangential
- **NOx Control:** Low NOx Burners

Post-Combustion Controls

- **NOx Control:** Hot-Side SCR
- **Particulates:** Cold-Side ESP
- **SO2 Control:** Wet FGD
- **SO2/NOx:** None
- **CO2 Control:** Absorption - MEA

By-Product Management

- **Recovery:** None
- **Fly Ash Disposal:** Mixed w/ Landfill
- **CO2 Storage:** Depleted Oil Wells
Current Coal
Name: Appalachian Medium Sulfur
Rank: Bituminous
Source: Model Default Coals

Composition (wt% as fired) and Higher Heating Value (Btu/lb)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating Value</td>
<td>1.326e+04</td>
</tr>
<tr>
<td>Carbon</td>
<td>73.81</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>4.880</td>
</tr>
<tr>
<td>Oxygen</td>
<td>5.410</td>
</tr>
<tr>
<td>Chlorine</td>
<td>7.000e-02</td>
</tr>
<tr>
<td>Sulfur</td>
<td>2.130</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1.420</td>
</tr>
<tr>
<td>Ash</td>
<td>7.230</td>
</tr>
<tr>
<td>Moisture</td>
<td>5.050</td>
</tr>
<tr>
<td>Cost ($/ton)</td>
<td>32.07</td>
</tr>
</tbody>
</table>

Favorite Coals
Name: Wyoming Powder River Basin
Rank: Sub-Bituminous

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating Value</td>
<td>8340</td>
</tr>
<tr>
<td>Carbon</td>
<td>48.18</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>3.310</td>
</tr>
<tr>
<td>Oxygen</td>
<td>11.87</td>
</tr>
<tr>
<td>Chlorine</td>
<td>1.000e-02</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.3700</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.7000</td>
</tr>
<tr>
<td>Ash</td>
<td>5.320</td>
</tr>
<tr>
<td>Moisture</td>
<td>30.24</td>
</tr>
<tr>
<td>Cost ($/ton)</td>
<td>12.46</td>
</tr>
<tr>
<td>Title</td>
<td>Units</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Gross Electrical Output</td>
<td>MWg</td>
</tr>
<tr>
<td>Steam Cycle Heat Rate</td>
<td>Btu/kWh</td>
</tr>
<tr>
<td>Boiler Efficiency</td>
<td>%</td>
</tr>
<tr>
<td>Capacity Factor</td>
<td>%</td>
</tr>
<tr>
<td>Excess Air For Furnace</td>
<td>% stoich.</td>
</tr>
<tr>
<td>Leakage Air at Preheater</td>
<td>% stoich.</td>
</tr>
<tr>
<td>Gas Temp. Exiting Economizer</td>
<td>deg. F</td>
</tr>
<tr>
<td>Gas Temp. Exiting Air Preheater</td>
<td>deg. F</td>
</tr>
<tr>
<td>Ambient Air Temperature</td>
<td>deg. F</td>
</tr>
<tr>
<td>Ambient Air Pressure</td>
<td>psia</td>
</tr>
<tr>
<td>Ambient Air Humidity</td>
<td>lb H2O/lb dry air</td>
</tr>
<tr>
<td>Collected Bottom Ash Solids</td>
<td>%</td>
</tr>
<tr>
<td>Base Plant Energy Requirements</td>
<td></td>
</tr>
<tr>
<td>Coal Pulverizer</td>
<td>% MWg</td>
</tr>
<tr>
<td>Steam Cycle Pumps</td>
<td>% MWg</td>
</tr>
<tr>
<td>Forced Draft Fans</td>
<td>% MWg</td>
</tr>
<tr>
<td>Cooling System</td>
<td>% MWg</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>% MWg</td>
</tr>
</tbody>
</table>
Uncertainty Editor

<table>
<thead>
<tr>
<th>Plant Parameter</th>
<th>Units</th>
<th>Value</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum SO2 Removal Efficiency</td>
<td>%</td>
<td>95</td>
<td>90</td>
<td>99</td>
</tr>
</tbody>
</table>

Distribution:
- Triangular
- Normal
- Uniform
- Fractiles

Distribution Details:
- **Normalized:**
 - Min: 0.9000
 - Mode: 1.0000
 - Max: 1.023
- **Nominal:**
 - Min: 85.50
 - Mode: 95.00
 - Max: 97.18

Description:
Triangular(a,b,c) describes a triangular-shaped distribution where the values a, b, and c represent the minimum, most likely and maximum values, respectively.

Uncertainty Areas:
- Base Plant
- Air Preheater
- Solid Waste Mgmt.
- NOx Control
- Particulate Control
- SO2 Control
- SO2/NOx Control

Uncertainty Tools: Untitled

- **Sample Size:** 50
- **Sampling Method:** Median LHS
Example: CDF Graph of Total Variable Costs (M$/yr)

Mean: 2.410
2.5 percentile: 1.900
Median (50th percentile): 2.353
97.5 percentile: 3.148
Concentrated CO2 (mton/yr) = 2.711e+06
CO₂ Module Results

- Flue gas (out) composition
- CO₂ emission level (kg CO₂/hr)
- Amount of CO₂ product (ton/hr)
- Purity of CO₂ product (%)
- Solvent circulation rate (m3/hr)
- Make-up solvent rate (kg MEA/hr)
- Make-up rate relative to the circulation rate (%)
- Waste generation rate (kg/hr)
- Energy penalty (% of MWg)
- Net power generation
- Cost of CO₂ captured ($/ton CO₂ captured)
- Cost increase in electricity (cents/kWh)
- Cost of CO₂ avoided ($/ton CO₂ avoided)
Additional Technology Options

- **Just Completed**
 - Combustion NO\textsubscript{x} Controls
 - Selective Non-Catalytic Reduction (SNCR)
 - Low NO\textsubscript{x} Burners (LNB)
 - LNB + Overfire air
 - LNB + SNCR
 - Natural Gas Reburn
 - Tangential, Wall & Cyclone Firing

- **Just Started**
 - Post-Combustion Controls
 - Air Toxics (mercury)
 - Other Fossil Fuels
 - Alternative Power Generation Systems
 - CO2 Sequestration Options
Future Developments:
A Menu of Technology Options
Select Gasification Combined Cycle (IGCC) Options

Choose Power System

Please Choose a Power System:

- Conventional Combustion
- Gasification Comb. Cycle
- Advanced Combustion
- Fuel Cells
- Vision 21 Plant
ASSEN Model of an IGCC System

- **Coal Handling**
 - Coal
 - Ash

- **Gasification, Particulate & Ash Removal, Fines Recycle**
 - Raw Syngas
 - Gasifier Air
 - Captured Fines

- **Steam Cycle & SCR**
 - Boiler Feedwater Return Water
 - Gasifier Steam
 - Shift & Regen. Steam

- **Zinc Ferrite Process**
 - Cyclone
 - Cyclone Clean Syngas
 - Off-Gas

- **Sulfuric Acid Plant**
 - Tailgas
 - Sulfuric Acid
 - Air

- **Steam Turbine**
 - Cooling Water Makeup
 - Exhaust Gas

- **Gas Turbines**
 - Cooling Water Blowdown
 - Net Electricity Output

- **Boiler Feedwater Treatment**
 - Blowdown
 - Exhaust Gas

- **Internal Electric Loads**
 - Air

- **Raw Water**
 - Blowdown
 - Exhaust Gas

- **Sulfuric Acid Plant**
 - Tailgas
 - Sulfuric Acid
 - Air
Response Surface Model for an IGCC System
Desktop Model of an IGCC System

- **Goal:** Optimization
- **Gasification Options**
 - Gasifier: KRW
 - Oxidant: Oxygen
 - Gas Cleanup: Hot
- **Post-Combustion Controls**
 - NOx Control: SCR
- **Solids Management**
 - Slag: Landfill
 - Sulfur: Sulfur, Landfill, Sulfuric Acid

Plant Diagram
Model Applications

- Process design
- Technology evaluation
- Cost estimation
- R&D management
- Risk analysis
- Environmental compliance
- Marketing studies
- Strategic planning
A Hierarchy of Process Models

- Mechanistic/Empirical Models
- Component Models
- Integrated Models
- System Models
- Enterprise

Validation — Communication