You are here

close

Citations

AGCI Interactive Energy Table

  1. Sum of hard coal, soft coal, and peat; data in 2014 [WEC, 2017a; WEC, 2013a; ]

  2. From 1139331 million tons of coal (proved reserves), equivalent to 9275293.671 TWh, latest data at the end of 2016 [BP, 2017]

  3. Data in 2015 [Statistia, 2018a]

  4. From 9,538,300 GWh, equivalent to 9538.3 TWh, data in 2015 [< http://www.iea.org/statistics/statisticssearch/report/?year=2014&country=WORLD&product=Coal">IEA, 2018c]

  5. Data in 2017, for US. [EIA, 2018p]

  6. Data in 2016 [IEA, 2017b]

  7. Installed coal-fired generating capacity (GW) growth rate 0.2%, 2015-2050 [EIA, 2018c]

  8. Data in 2016, vary from technology [EIA, 2016a]

  9. Data in 2016, vary from technology [EIA, 2016a]

  10. Data in 2016, vary from technology [EIA, 2016a]

  11. Data in 2016, vary from technology [EIA, 2016a]

  12. Data in 2016, vary from technology [EIA, 2016a]

  13. Data in 2016, vary from technology [EIA, 2016a]

  14. Data in 2016 [Lazard, 2017]

  15. Data in 2016 [Lazard, 2017]

  16. From 102.6-180.4 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  17. From 102.6-180.4 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  18. From 65 USD/MWh in US, in 2017. [Statista, 2018c]

  19. From 17,713,376 million tons of hard coal resource; data in 2014. [WEC, 2017a]

  20. From 816214 million tons of hard coal (proved reserves), equivalent to 6644798.174 TWh; latest data at the end of 2016 [BP, 2017]

  21. From Sub-bituminous coal (649513kt), Lignite (539433kt), total to 1188946 kt (9679.21 TWh), electricity efficiency 0.33, equivalent to 3226 TWh in 2014 [EIA, 2018c]

  22. Data in 2016, by calculation; coking coal_steaming coal [IEA, 2017b]

  23. From 65-80 Euro(2013)/MWh, data in 2013; conversion factor 1EU = 1.33USD in 2013 [Fraunhofer ISE, 2013]

  24. From 65-80 Euro(2013)/MWh, data in 2013; conversion factor 1EU = 1.33USD in 2013 [Fraunhofer ISE, 2013]

  25. Projected to 2040 [Fraunhofer ISE, 2013]

  26. Projected to 2040 [Fraunhofer ISE, 2013]

  27. From 4,418,658 million tons of soft coal resource; data in 2014. [WEC, 2017a]

  28. From 323117 million tons of soft coal (proved reserves), equivalent to 2630495.497 TWh, latest data at the end of 2016 [BP, 2017]

  29. Subbituminous(25,082,899TJ)+Lignite(10,937,540TJ) = 36,020,439 TJ, equivalent to 10,006 TWh, data in 2014 [EIA, 2018c]

  30. Data in 2016, by calculation; lignite [IEA, 2017b]

  31. From 38-52 Euro(2013)/MWh, data in 2013; conversion factor 1EU = 1.33USD in 2013 [Fraunhofer ISE, 2013]

  32. From 38-52 Euro(2013)/MWh, data in 2013; conversion factor 1EU = 1.33USD in 2013 [Fraunhofer ISE, 2013]

  33. From upper end of total peat in situ range of 6,000-13,800 billion m3. Conversion is referred to (Virtanen, 2012) that 23.7 billion m3 of energy peat reserve in situ contents energy 12 800 TWh. [WEC, 2013a; Kimmo Virtanen, 2012]

  34. From 0.3 trillion tons, conversion 20-23 MJ/kg peat. [Fuchsman, 2012; FAO, 1988]

  35. From 3535kt (28.78 TWh), electricity efficiency 0.33, equivalent to 9.6 TWh, data in 2014 [IEA, 2018c]

  36. Data in 2015, by calculation [IEA, 2017b]

  37. Sum of conventiol crude, tar sands, tight oil, and oil shale

  38. From 18.4 ZJ of oil (world proven)[Thakur, 2016]

  39. Data in 2013 [IEA, 2015b]

  40. Data in 2014 [IEA, 2016]

  41. Data in 2017, for US; 13.0% for Steam Turbine, 2.0% for Combustion Turbine [EIA, 2018p]

  42. Data in 2016, by calculation [IEA, 2017c]

  43. Installed liquids-fired generating capacity (GW) growth rate -1.1%, 2015-2050 [EIA, 2018d]

  44. From 18.27 (2015$/MMBtu), data in 2015 [EIA, 2016b]

  45. From 18.27 (2015$/MMBtu), data in 2015 [EIA, 2016b]

  46. From 18.05-23.49$(2015)/MMBtu, data in 2015. [IEA, 2018o]

  47. From 18.05-23.49$(2015)/MMBtu, data in 2015. [IEA, 2018o]

  48. From 3.1 trillion barrels (including initial, proven and probable reserves), equivalent to 5,268,160 TWh. [IEA, 2013a]

  49. From 1706.7 thousand million barrels of conventiol crude (proved reserves); data in end of 2016. [BP, 2017]

  50. Latest data in 2015 [IEA, 2018b]

  51. Data in 2016 [BP, 2017]

  52. Crude oil /a production growth rate 0.6%, 2015-2050 [EIA, 2018e]

  53. From $45-115/bbl, in 2014-2015 [EIA, 2015b]

  54. From $45-115/bbl, in 2014-2015 [EIA, 2015b]

  55. From $95/bbl (nomil $), projected to 2030 [EIA, 2007]

  56. It is estimated that over 2 trillion barrels (equilavlent to ~3,398,800 TWh) of oil reserves exist in the form of tar sands, although not all of these resources are economically or technically recoverable; data in 2015. [Robert Strauss Center, UT Austin, 2015]

  57. From ~600 billion barrels [Speight, 2016]

  58. From oil shale and oil sands 14,973 kt, data in 2014 [IEA, 2018c]

  59. Production growth rate. From Over the 15-year period CAPP sees crude oil production rising by 1.1 million b/d from 3.852 million b/d in 2015 (actual) to 4.928 million b/d in 2030. Most of the growth will come from oilsands which will rise from 2.365 million b/d to 3.668 million b/d, an increase of about one-third; 2015-2030 [Statista, 2018b]

  60. From $60.52-75.73/bbl [Giacchetta, 2015b]

  61. From $60.52-75.73/bbl [Giacchetta, 2015b]

  62. From 418.9 billion barrels of tight oil (unproved technically recoverable), data updated in 2015 [EIA, 2015a]

  63. From 175 billion barrels of commercial recoverable tight oil, data in 2013 [OGJ, 2013]

  64. Production growth rate, 2.0 million b/d in 2012, 7.3 million b/d in 2030, by calculation. [EIA, 2017b]

  65. From $51/bbl [WorldOil, 2016]

  66. From $51/bbl [WorldOil, 2016]

  67. From 4,291 billion barrels [WEC, 2017b]

  68. From 345 billion barrels of technically recoverable shale oil resources [EIA, 2013b]

  69. From oil shale and oil sands 14,973 kt, data in 2014 [IEA, 2018c]

  70. Data in 2015, by calculation [IEA, 2017]

  71. 2023-2030 [EIA, 2009]

  72. Sum of conventional gas and unconventional gas

  73. From 15.7ZJ of gas (world proved), equivalent to 4,361,111 TWh[Thakur, 2016]

  74. Data in 2016 [EIA, 2018a]

  75. Sum of conventional gas and shale gas

  76. Data in 2017, for US; 54.8% for Combined Cycle, 9.4% for Combustion Turbine, 11.3% for Steam Turbine [EIA, 2018p]

  77. Data in 2016 [IEA, 2017d]

  78. Installed tural-gas-fired generating capacity (GW) growth rate 1.2%, 2015-2050 [EIA, 2018f]

  79. Data in 2016, vary from technology [EIA, 2016a]

  80. Data in 2016, vary from technology [EIA, 2016a]

  81. Data in 2016, vary from technology [EIA, 2016a]

  82. Data in 2016, vary from technology [EIA, 2016a]

  83. Data in 2016, vary from technology [EIA, 2016a]

  84. Data in 2016, vary from technology [EIA, 2016a]

  85. Data in 2016 [Lazard, 2017]

  86. Data in 2016 [Lazard, 2017]

  87. From 53.2-152.1 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  88. From 53.2-152.1 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  89. From 10,000 tcf. [Thakur & Rajput, 2011]

  90. From 6588.8 trilllion cubic feet of conventiol gas (proved reserves), data in end of 2016. [BP, 2017]

  91. Data in 2016 [EIA, 2018a]

  92. Data in 2015 [IEA, 2018c]

  93. Data in 2015 [IEA, 2018a]

  94. Net tural-gas-fired electricity generation growth rate 2.2%, 2015-2050 [EIA, 2018g]

  95. Data in 2016, vary from technology [EIA, 2016a]

  96. Data in 2016, vary from technology [EIA, 2016a]

  97. Data in 2016 [Lazard, 2017]

  98. Data in 2016 [Lazard, 2017]

  99. From 53.2-152.1 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  100. From 53.2-152.1 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  101. From 52 USD/MWh in US, in 2017. [Statista, 2018c]

  102. From 16,110 tcf (456 tcm) [WEC, 2013b]

  103. From 7,576.6 trillion cubic feet of wet shale gas (unproved technically recoverable) [EIA, 2015]

  104. From 40 bcf/d, data in 2016 [Berman, 2016]

  105. Data in 2015, by calculation [EIA, 2017a]

  106. Tight gas, shale gas and coalbed methane production growth rate 3.6%, 2015-2050 [EIA, 2018h]

  107. [Gao & You, 2015]

  108. [Gao & You, 2015]

  109. From $5.06/MBtu [BP, 2015]

  110. From upper limit of 275-11,296 trillion cubic feet [Thakur, 2016 ]

  111. From ~30% of GIP (gas in place) [Thakur, 2016; FMI, 2018]

  112. Tight gas, shale gas and coalbed methane production growth rate 3.6%, 2015-2050 [EIA, 2018g]

  113. [Sarhosis et al., 2016]

  114. From 20,000 trillion cubic meters, or ~ 700,000 Tcf [NETL, 2011]

  115. From 6,700 Tcf [US DOE, 2011]

  116. Tight gas, shale gas and coalbed methane production growth rate 3.6%, 2015-2050 [EIA, 2018g]

  117. From $4.70 to $8.60 per MBtu, projected to 2025 [Lester, 2016]

  118. From $4.70 to $8.60 per MBtu, projected to 2025 [Lester, 2016]

  119. Data in 2015 [IAEA, 2016]

  120. Data in 2016 [WNA, 2018]

  121. Data in 2017, for US. [EIA, 2018p]

  122. From consumption growth rate 1.3%, data in 2016 [BP, 2017]

  123. Installed nuclear generating capacity (GW) growth rate 1.2%, 2015-2050 [EIA, 2018i]

  124. Data in 2016 [EIA, 2016a]

  125. Data in 2016, vary from technology [EIA, 2016a]

  126. Data in 2016, vary from technology [EIA, 2016a]

  127. Data in 2016 [Lazard, 2017]

  128. Data in 2016 [Lazard, 2017]

  129. From 87.1-93.8 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  130. From 87.1-93.8 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  131. From 146 USD/MWh in US, in 2017. [Statista, 2018c]

  132. Data in 2016 [Lazard, 2017]

  133. Data in 2016 [Lazard, 2017]

  134. From 87.1-93.8 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  135. From 87.1-93.8 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  136. [Ramachandra & Shruthi, 2007]

  137. From upper range of 118-2592 EJ/yr [Moriarty & Honnery, 2012]

  138. Sum of PV, Low-temp thermal and high-temp thermal [REN 21, 2017]

  139. Data in 2015 [IRENA, 2018a]

  140. 18-34

  141. Data in 2015, by calculation [EIA, 2018b]

  142. Installed solar generating capacity (GW) growth rate 4.9%, 2015-2050 [EIA, 2018j]

  143. From 6,500 TW [Jacobson & Delucchi, 2011]

  144. 372,000-469,000 by 2050 [Edenhofer et al., 2011]

  145. Data in 2016 [REN 21, 2017]

  146. Data in 2015 [IRENA, 2018a]

  147. Data in 2017 [IRE, 2018b]

  148. Data in 2015 [REN 21, 2016]

  149. From 227GW in 2015, 780GW in 2030, by calculation [REN21, 2016; IRE, 2016]

  150. Global average installed cost, data in 2017 [IRE, 2018b]

  151. [EIA, 2016a]

  152. [EIA, 2016a]

  153. From 20-25% of LCOE; data in 2017 [IRE, 2018b]

  154. From 20-25% of LCOE; data in 2017 [IRE, 2018b]

  155. Data in 2016 [Lazard, 2017]

  156. Data in 2016 [Lazard, 2017]

  157. From 48.1-115.1 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  158. From 48.1-115.1 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  159. From 72 USD/MWh in US, in 2017. [Statista, 2018c]

  160. The theoretical potential of low temperature thermal far exceeds human energy demand. [Edenhofer et al., 2011]

  161. Data in 2016 [REN 21, 2017]

  162. Low-temp thermal and high-temp thermal; data in 2015 [IRENA, 2018a]

  163. Data in 2017, for US. [EIA, 2018p]

  164. Data in 2015 [REN 21, 2016]

  165. Data in 2016 [Lazard, 2017]

  166. Data in 2016 [Lazard, 2017]

  167. From 149.1-314.8 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  168. From 149.1-314.8 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  169. From 4,600 TW [Jacobson & Delucchi, 2011]

  170. From upper range of 68,900-2,230,000 by 2050 [Edenhofer et al., 2011]

  171. Data in 2016 [REN 21, 2017]

  172. Low-temp thermal and high-temp thermal; data in 2015 [IRENA, 2018a]

  173. Data in 2017 [IRE, 2018b]

  174. Data in 2015 [REN 21, 2016]

  175. From 4.8GW in 2015, 44GW in 2030, by calculation [REN 21, 2016; IRE, 2016]

  176. Global average installed cost, data in 2017 [IRE, 2018b]

  177. From 0.02-0.03 USD/kWh for Parabolic Though Collector(PTC),0.03-0.04 USD/kWh for Solar Tower(ST); data in 2017 [IRE, 2018b]

  178. From 0.02-0.03 USD/kWh for Parabolic Though Collector(PTC),0.03-0.04 USD/kWh for Solar Tower(ST); data in 2017 [IRE, 2018b]

  179. Avg. 0.22 USD/kWh, in 2017 [IRE, 2018b]

  180. From 5800 EJ/yr [REN21, 2004]

  181. [Global CCS Institute, 2008]

  182. Data in end 2016 [GWEC, 2017]

  183. Data in 2015 [IRENA, 2017]

  184. Data in 2017, for US. [EIA, 2018p]

  185. Data in 2015 [REN 21, 2016]

  186. Installed wind-powered generating capacity (GW) growth rate 3.1%, 2015-2050 [EIA, 2018k]

  187. Data in 2016 [EIA, 2017c]

  188. Data in 2016 [EIA, 2017c]

  189. From 37.7-172.7 $(2016)/MWh,projected to 2040 [EIA, 2017c]

  190. From 37.7-172.7 $(2016)/MWh,projected to 2040 [EIA, 2017c]

  191. From 94.8953 TW [WWEA, 2014]

  192. From 13.6 TW [Zhou et al., 2012]

  193. Data in end 2016 [GWEC, 2017]

  194. Data in 2015 [IRENA, 2017]

  195. Data in 2017 [IRE, 2018b]

  196. Data in 2015, by calculation [IRE, 2017; IEA, 2015c]

  197. Production growth rate, projected to 2020 [EIA, 2015c]

  198. Global average installed cost, data in 2017 [IRE, 2018b]

  199. Data in 2017 [IRE, 2018b]

  200. Data in 2017 [IRE, 2018b]

  201. Data in 2017 [IRE, 2018b]

  202. Data in 2017 [IRE, 2018b]

  203. From 24-141 USD/MWh, avg. 56 USD/MWh, data in 2016 [IRE, 2018b]

  204. From 24-141 USD/MWh, avg. 56 USD/MWh, data in 2016 [IRE, 2018b]

  205. From 37.7-69.4 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  206. From 37.7-69.4 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  207. From 56 USD/MWh in US, in 2017. [Statista, 2018c]

  208. From ~61 TW [Makridis, 2013]

  209. [Ackermann et al., 2004.]

  210. Data in end 2016 [GWEC, 2017]

  211. Data in 2015 [IRENA, 2017]

  212. Data in 2017 [IRE, 2018b]

  213. Data in 2015, by calculation [IRE, 2017; IEA, 2015c]

  214. Production growth rate, projected to 2020 [EIA, 2015c]

  215. Global average installed cost, data in 2017 [IRE, 2018b]

  216. Data in 2017 [IRE, 2018b]

  217. Data in 2017 [IRE, 2018b]

  218. From 96-208 USD/MWh, avg. 123 USD/MWh, data in 2016[IRE, 2018b]

  219. From 96-208 USD/MWh, avg. 123 USD/MWh, data in 2016[IRE, 2018b]

  220. From 111.8-172.7 $(2016)/MWh, projected to 2040[EIA, 2017c]

  221. From 111.8-172.7 $(2016)/MWh, projected to 2040[EIA, 2017c]

  222. From 1,800 TW [Marvel et al., 2013]

  223. From 52 pWh/yr [Hoes et al., 2017]

  224. [WEC, 2017d]

  225. Data in 2016 [IRE, 2017]

  226. Data in 2016 [IRENA, 2017]

  227. Data in 2017 [IRE, 2018b]

  228. Data in 2016, consumption growth rate [BP, 2017]

  229. Installed hydroelectric generating capacity (GW) growth rate 1.0%, 2015-2050 [EIA, 2018l]

  230. Global average installed cost, data in 2017 [IRE, 2018b]

  231. Data in 2017 [IRE, 2018b]

  232. Data in 2017 [IRE, 2018b]

  233. Data in 2017 [IRE, 2018b]

  234. From 18~246 USD/MWh, avg. 51 USD/MWh, data in 2016 [IRE, 2018b]

  235. From 18~246 USD/MWh, avg. 51 USD/MWh, data in 2016 [IRE, 2018b]

  236. From 55.3-69.7 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  237. From 55.3-69.7 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  238. [Johansson et al., 2004]

  239. From upper range of 1.8-33 EJ/yr [Moriarty & Honnery, 2012]

  240. Data in 2016 [IRE, 2017]

  241. Data in 2015 [IRENA, 2017]

  242. 1GW in 2015, 11GW in 2030, capacity growth rate 2015-2030 [Raventos et al., 2010.]

  243. [WEC, 2017c]

  244. [Krewitt et al., 2009]

  245. Wave and tidal energy [REN 21, 2016]

  246. Data in 2016 [WEC, 2017c]

  247. Data in 2016 [WEC, 2017c]

  248. Data in 2016 [WEC, 2017c]

  249. Data in 2016 [WEC, 2017c]

  250. Data in 2016 [WEC, 2017c]

  251. Data in 2016 [WEC, 2017c]

  252. Data in 2016 [WEC, 2017c]

  253. From 148 EUR/MWh [IRE, 2014b]

  254. From 148 EUR/MWh [IRE, 2014b]

  255. [EY, 2013]

  256. From upper range of 30-90 pWh [WEC, 2017c]

  257. Not at a commercial scale

  258. Data in 2016 [WEC, 2017c]

  259. Data in 2016 [WEC, 2017c]

  260. Data in 2016 [WEC, 2017c]

  261. Data in 2016 [WEC, 2017c]

  262. Data in 2016 [WEC, 2017c]

  263. Data in 2016 [WEC, 2017c]

  264. Data in 2016 [WEC, 2017c]

  265. From 3.7 TW [Jacobson & Delucchi, 2011]

  266. From 500 kW [Zhou et al., 2014]

  267. From 1006GWh [IEA, 2018b]

  268. Data in 2016 [WEC, 2017c]

  269. Data in 2016 [WEC, 2017c]

  270. Data in 2016 [WEC, 2017c]

  271. Data in 2016 [WEC, 2017c]

  272. Data in 2016 [WEC, 2017c]

  273. Data in 2016 [WEC, 2017c]

  274. Data in 2016 [WEC, 2017c]

  275. From 75 £/MWh, projected to 2030 [Hundleby & Blanch, 2016]

  276. [IEA, 2017a]

  277. The total technical potential for salinity gradient power is estimated to be around 647 gigawatts (GW) globally, (compared to a global power capacity in 2011 of 5 456 GW), which is equivalent to 5,177 terawatt-hours (TWh), or 23% of electricity consumption in 2011. [IRE, 2014a]

  278. [EY, 2013]

  279. Not at a commercial scale

  280. From 45 TW [Jacobson & Delucchi, 2011]

  281. From upper range of 1.2-22 EJ/yr [Moriarty & Honnery, 2012]

  282. From 13.5 GW power and 23 GW direct use [REN21, 2017]

  283. Data in 2015 [REN21, 2017.]

  284. Data in 2017 [IRE, 2018b]

  285. Data in 2015 [REN 21, 2016]

  286. Geothermal generating capacity (GW) growth rate 4.4%, 2015-2050 [EIA, 2018m]

  287. Global average installed cost, data in 2017 [IRE, 2018b]

  288. Data in 2017 [IRE, 2018b]

  289. Data in 2016 [Lazard, 2017]

  290. Data in 2016 [Lazard, 2017]

  291. From 35.3-78.1 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  292. From 35.3-78.1 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  293. From 2900 EJ/yr [EBIA]

  294. From upper range of 160–270 EJ/yr [Haberl et al., 2010]

  295. From 112 GW bio-power and 311 GW bio-heat [REN 21, 2017]

  296. Data in 2016 [REN21, 2017.]

  297. Data in 2017 [IRE, 2018b]

  298. Data in 2016 [REN 21, 2017; REN 21, 2016]

  299. Projected production growth rate 2017-2050; data in 2017. [EIA, 2018n]

  300. Global average installed cost, data in 2017 [IRE, 2018b]

  301. Data in 2017 [IRE, 2018b]

  302. Data in 2017 [IRE, 2018b]

  303. Data in 2017 [IRE, 2018b]

  304. Data in 2016 [Lazard, 2017]

  305. Data in 2016 [Lazard, 2017]

  306. From 55.3-69.7 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  307. From 55.3-69.7 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  308. Agricultural residues (10–66 EJ), forestry residues (3–35 EJ), forestry (60–230 EJ). Sum to 73 - 331 EJ, equivalent to 20,278 - 91,944 TWh [Slade et al., 2014]

  309. From 49 EJ/yr [Haberl et al., 2010]

  310. Data in 2015 [IEA, 2018d]

  311. Data in 2017, for US. [EIA, 2018p]

  312. Data in 2015 [IEA, 2018d]

  313. Projected production growth rate 2017-2050; data in 2017. [EIA, 2018n]

  314. [REN 21, 2013]

  315. [REN 21, 2013]

  316. Data in 2016 [Lazard, 2017]

  317. Data in 2016 [Lazard, 2017]

  318. From 73.2-114.5 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  319. From 73.2-114.5 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  320. From upper range of 12-120 EJ, equivalent to 3,333-33,333 TWh [Slade et al., 2014]

  321. From 11EJ/yr [Haberl et al., 2010]

  322. Data in 2015 [IEA, 2018]

  323. Data in 2017, for US. [EIA, 2018p]

  324. Data in 2015 [IEA, 2018a]

  325. Projected production growth rate 2017-2050; data in 2017. [EIA, 2018n]

  326. Data in 2016 [Lazard, 2017]

  327. Data in 2016 [Lazard, 2017]

  328. From 73.2-114.5 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  329. From 73.2-114.5 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  330. From 22–1,272 EJ, equivalent to 6,111 TWh [Slade et al., 2014]

  331. From 40-110 EJ/yr, projected by 2050. Equivalent to 11,111 TWh - 30556 TWh. http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12141/pdf

  332. Data in 2016 [Lazard, 2017]

  333. Data in 2016 [Lazard, 2017]

  334. From 73.2-114.5 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  335. From 73.2-114.5 $(2016)/MWh, projected to 2040 [EIA, 2017c]

Energy Storage Technologies

  1. [ Zakeri & Syri, 2015]

  2. [Luo et al. 2015]

  3. [ Zakeri & Syri, 2015]

  4. [ Zakeri & Syri, 2015]

  5. [ Zakeri & Syri, 2015]

  6. [ Zakeri & Syri, 2015]

  7. [ Zakeri & Syri, 2015]

  8. [Luo et al. 2015]

  9. [Luo et al. 2015]

  10. [Luo et al. 2015]

  11. [Nguyen et al., 2017]

  12. [Luo et al. 2015]

  13. [Luo et al. 2015]

  14. Underground CAES: 5-400 MW; aboveground CAES: 3-15 MW [ Zakeri & Syri, 2015]

  15. [Luo et al. 2015]

  16. [ Zakeri & Syri, 2015]

  17. [ Zakeri & Syri, 2015]

  18. [ Zakeri & Syri, 2015]

  19. [ Zakeri & Syri, 2015]

  20. [ Zakeri & Syri, 2015]

  21. [Luo et al. 2015]

  22. [Luo et al. 2015]

  23. [Luo et al. 2015]

  24. [Nguyen et al., 2017]

  25. [Luo et al. 2015]

  26. [Luo et al. 2015]

  27. [ Zakeri & Syri, 2015]

  28. [Luo et al. 2015]

  29. [ Zakeri & Syri, 2015]

  30. [ Zakeri & Syri, 2015]

  31. [ Zakeri & Syri, 2015]

  32. [ Zakeri & Syri, 2015]

  33. [ Zakeri & Syri, 2015]

  34. [Luo et al. 2015]

  35. [Luo et al. 2015]

  36. [Luo et al. 2015]

  37. [Nguyen et al., 2017]

  38. [Luo et al. 2015]

  39. [Luo et al. 2015]

  40. [ Zakeri & Syri, 2015]

  41. [Luo et al. 2015]

  42. [ Zakeri & Syri, 2015]

  43. [ Zakeri & Syri, 2015]

  44. [ Zakeri & Syri, 2015]

  45. [ Zakeri & Syri, 2015]

  46. [ Zakeri & Syri, 2015]

  47. [Luo et al. 2015]

  48. [Luo et al. 2015]

  49. [ Zakeri & Syri, 2015]

  50. [Nguyen et al., 2017]

  51. [Luo et al. 2015]

  52. [Luo et al. 2015]

  53. [ Zakeri & Syri, 2015]

  54. [Luo et al. 2015]

  55. [ Zakeri & Syri, 2015]

  56. [ Zakeri & Syri, 2015]

  57. [ Zakeri & Syri, 2015]

  58. [ Zakeri & Syri, 2015]

  59. [ Zakeri & Syri, 2015]

  60. [Luo et al. 2015]

  61. [ Zakeri & Syri, 2015]

  62. [ Zakeri & Syri, 2015]

  63. [Nguyen et al., 2017]

  64. [Luo et al. 2015]

  65. [Luo et al. 2015]

  66. [ Zakeri & Syri, 2015]

  67. [Luo et al. 2015]

  68. [ Zakeri & Syri, 2015]

  69. [ Zakeri & Syri, 2015]

  70. [ Zakeri & Syri, 2015]

  71. [ Zakeri & Syri, 2015]

  72. [ Zakeri & Syri, 2015]

  73. [Luo et al. 2015]

  74. [ Zakeri & Syri, 2015]

  75. [ Zakeri & Syri, 2015]

  76. [Nguyen et al., 2017]

  77. [Luo et al. 2015]

  78. [Luo et al. 2015]

  79. [ Zakeri & Syri, 2015]

  80. [ Zakeri & Syri, 2015]

  81. [ Zakeri & Syri, 2015]

  82. [ Zakeri & Syri, 2015]

  83. [ Zakeri & Syri, 2015]

  84. [ Zakeri & Syri, 2015]

  85. [ Zakeri & Syri, 2015]

  86. [ Zakeri & Syri, 2015]

  87. [ Zakeri & Syri, 2015]

  88. [Nguyen et al., 2017]

  89. [ Zakeri & Syri, 2015]

  90. [Luo et al. 2015]

  91. [ Zakeri & Syri, 2015]

  92. [ Zakeri & Syri, 2015]

  93. [ Zakeri & Syri, 2015]

  94. [ Zakeri & Syri, 2015]

  95. [ Zakeri & Syri, 2015]

  96. [Luo et al. 2015]

  97. [Luo et al. 2015]

  98. [Luo et al. 2015]

  99. [Nguyen et al., 2017]

  100. [Luo et al. 2015]

  101. [Luo et al. 2015]

  102. [ Zakeri & Syri, 2015]

  103. [Luo et al. 2015]

  104. [ Zakeri & Syri, 2015]

  105. [ Zakeri & Syri, 2015]

  106. [ Zakeri & Syri, 2015]

  107. [ Zakeri & Syri, 2015]

  108. [ Zakeri & Syri, 2015]

  109. [Luo et al. 2015]

  110. [Luo et al. 2015]

  111. [Luo et al. 2015]

  112. [Nguyen et al., 2017]

  113. [Luo et al. 2015]

  114. [Luo et al. 2015]

  115. [Luo et al. 2015]

  116. [Luo et al. 2015]

  117. [Luo et al. 2015]

  118. [Luo et al. 2015]

  119. [Nguyen et al., 2017]

  120. [ Zakeri & Syri, 2015]

  121. [Luo et al. 2015]

  122. [ Zakeri & Syri, 2015]

  123. [ Zakeri & Syri, 2015]

  124. [ Zakeri & Syri, 2015]

  125. [ Zakeri & Syri, 2015]

  126. [ Zakeri & Syri, 2015]

  127. [ Zakeri & Syri, 2015]

  128. [ Zakeri & Syri, 2015]

  129. [Nguyen et al., 2017]

  130. [Luo et al. 2015]

  131. [Luo et al. 2015]

  132. [Luo et al. 2015]

  133. [Luo et al. 2015]

  134. [Luo et al. 2015]

  135. [Luo et al. 2015]

  136. [Luo et al. 2015]

  137. [Luo et al. 2015]

  138. [Nguyen et al., 2017]

close
 availabilityinstalled scalegrowthcost
Capital Costs (USD/kW)Fixed O&M Costs (USD/kW-yr)Variable O&M Costs (USD/MWh)Levelized Costs (USD/MWh)Projected Costs (USD/MWh)
Energy SourceResource (TWh)Resource (TWh/yr)Reserve (TWh)Reserve (TWh/yr)Installed Capacity (GW)Production (TWh)Total Primary Energy (TWh)Capacity Factor (%)Current Rates (%)Projected Rates (%)minmaxminmaxminmaxminmaxminmaxLifetime Costs (USD/MWh)
Totals840,826,91841,852,28610,06253,077
 Coal  187,630,100 [1]9,275,294 [2]1,646 [3]9,538 [4]53.3 [5]-5.93 [6]0.2 [7]226 [8]4,620 [9]22 [10]70 [11]5 [12]7.1 [13]60 [14]143 [15]102.6 [16]180.4 [17]65 [18]
Hard144,204,600 [19]6,644,798 [20]8,871 [21]-6.28 [22]86.45 [23]106.4 [24]45.1 [25] [26]
Soft35,972,300 [27]2,630,495 [28]3,226 [29]-3.43 [30]50.54 [31]69.16 [32]
Peat7,453,200 [33]1,917,000 [34]10 [35]-33.55 [36]
 Oil  16,670,994 [37]5,111,111 [38]452 [39]1,023 [40]13.0, 2.0 [41]0.11 [42]-1.1 [43]62.3 [44] [45]61.54 [46]80.09 [47]
Conventional Crude5,268,160 [48]2,900,377 [49]990 [50]0.5 [51]0.6 [52]27.6 [53]70.6 [54]58.3 [55]
Tar sands3,398,800 [56]1,020,000 [57]122 [58]2.97 [59]37.17 [60]46.51 [61]
Tight oil711,881 [62]297,396 [63]9.015 [64]31.3 [65] [66]
Oil shale7,292,153 [67]586,500 [68] [69]-6.5 [70]35 [71]
 Gas  216,112,365 [72]4,361,111 [73]1,682 [74]9,822 [75]54.8, 9.4,11.3 [76]0.8 [77]1.2 [78]678 [79]1,342 [80]6.8 [81]17.5 [82]2 [83]10.7 [84]42 [85]210 [86]53.2 [87]152.1 [88]
Conventional Gas2,930,711 [89]1,930,987 [90]1,682 [91]5,543 [92]2.202 [93]2.2 [94]678 [95]1,342 [96]42 [97]78 [98]53.2 [99]152.1 [100]52 [101]
Shale gas4,721,374 [102]2,220,482 [103]4,279 [104]54.13 [105]3.6 [106]69 [107]91 [108]17.3 [109]
Coalbed methane3,310,531 [110]993,159 [111]3.6 [112]46 [113]
Methane hydrates205,149,749 [114]1,963,576 [115]3.6 [116]16 [117]29.3 [118]
 Nuclear  383 [119]2,476 [120]92.2 [121]1.3 [122]1 [123]5,945 [124]100.28 [125]2.3 [126]112 [127]183 [128]87.1 [129]93.8 [130]146 [131]
Uranium fission112 [132]183 [133]87.1 [134]93.8 [135]
Thorium fission
Lithium fusion
Hydrogen fusion
 Solar  1,500,000,000 [136]720,000 [137]763.8 [138]253.6 [139]18-34 [140]20.7 [141]4.9 [142]Vary from technologyVary from technologyVary from technologyVary from technologyVary from technology
Photovoltaic (PV)56,940,000 [143]469,000 [144]303 [145]243.6 [146]18 [147]28 [148]9 [149]1,388 [150]21.8 [151]23.9 [152]20 [153]25 [154]43 [155]319 [156]48.1 [157]115.1 [158]72 [159]
Low-temp thermal [160]456 [161]9.6 [162]21.8 [163]6 [164]98 [165]181 [166]155.4 [167]340.6 [168]
High-temp thermal40,296,000 [169]2,230,000 [170]4.8 [171] [172]34 [173]9.7 [174]16 [175]5,564 [176]20 [177]40 [178]220 [179]
 Wind  1,611,111 [180]278,000 [181]486.7 [182]826 [183]36.7 [184]17 [185]3.1 [186]Vary from technologyVary from technologyVary from technology65 [187]250 [188]37.7 [189]172.7 [190]
Onshore831,324 [191]119,500.0 [192]472.3 [193]790 [194]30 [195]16.67 [196]12 [197]1,477 [198]41 [199]76 [200]0.02 [201]0.03 [202]24 [203]141 [204]37.7 [205]69.4 [206]56 [207]
Offshore534,360 [208]36,999.0 [209]14.4 [210]36.0 [211]39 [212]43.88 [213]24 [214]4,239 [215]20 [216]60 [217]96 [218]208 [219]111.8 [220]172.7 [221]
High-altitude15,768,000 [222]NA
 Hydro52,000 [223]10,000 [224]1,246 [225]3,996 [226]48 [227]2.8 [228]1 [229]1,535 [230]15 [231]60 [232]0.003 [233]18 [234]246 [235]55.3 [236]69.7 [237]
 Ocean  2,040,000 [238]9,200 [239]0.536 [240]1.0 [241]22.4 [242]Vary from technologyVary from technologyVary from technologyVary from technology
Wave32,000 [243]5,555 [244]1.0 [245]30-35 [246]NA3,600 [247]15,300 [248]100 [249]500 [250]210 [251]679 [252]165 [253]198 [254]
Thermal conversion44,000 [255]90,000 [256]Not at a commercial scale [257]97 [258]NA15,000 [259]30,000 [260]480 [261]950 [262]350 [263]650 [264]
Tidal/currents32,412 [265]0.0005 [266]1.0 [267]35-42 [268]NA4,300 [269]8,700 [270]150 [271]530 [272]210 [273]470 [274]94 [275]
Salinity gradients2,000 [276]5,177 [277]0.014 [278]Not at a commercial scale [279]NANot at a commercial level
 Geothermal394,200 [280]6,000 [281]36.5 [282]78.0 [283]79 [284]2.4 [285]4 [286]2,959 [287]110 [288]77 [289]117 [290]36.6 [291]85 [292]
 Biomass  805,556 [293]75,000 [294]433 [295]504 [296]86 [297]8.62 [298]1 [299]2,668 [300]53 [301]160 [302]0.005 [303]55 [304]114 [305]73.2 [306]114.5 [307]
Wood and residues91,944 [308]13,611 [309]344 [310]50.7 [311]6.79 [312]1 [313]200 [314]5,500 [315]55 [316]114 [317]73.2 [318]114.5 [319]
Waste33,333 [320]3,055 [321]94.2 [322]70.9 [323]0.23 [324]1 [325]55 [326]114 [327]73.2 [328]114.5 [329]
Energy crops6,111 [330]NA [331]55 [332]114 [333]73.2 [334]114.5 [335]
 powercapacitydurationefficiencylifetimemobilitycostdensity
Storage TypePower Rating/Rated Power (MW, range)Rated Energy Capacity (MWh, range)Storage DurationDischarge/cycle durationCycle/Roundtrip Efficiency (%, range)Lifetime (yrs)Lifetime (cycles)Mobile vs. StationaryCapital Cost ($/kWh)Fixed Operation + Maintenance ($/kW-yr)Variable Operation + Maintenance ($/kWh)Technical MaturityEnergy Density (Wh/L)Power Density (W/L)
Mechanical
Pumped Hydro10~5000 [336]500-8000 [337]h-months [338]1-24h [339]70-82 [340]50-60 [341]20,000-50,000 [342]Stationary5-100 [343]3 [344]0.004 [345]Actual system proven in operational environment [346]0.5-1.5 [347]0.5-1.5 [348]
Compressed Air (CAES)3-400 [349]0-1000; 0.002-0.01 [350]h-months [351]1-24h [352]70-90 [353]20-40 [354]>13,000 [355]Stationary2-250 [356]19-25 [357]0.003 [358]system complete and qualifie [359]3~6 [360]0.5-2 [361]
Flywheel0-0.25 [362]0.0052-5 [363]s-min [364]ms-15m [365]93-95 [366]15-20 [367]>13,000 [368]Staionary1000-14000 [369]20 [370]0.004 [371]Actual system proven in operational environment [372]20-80 [373]1000-2000 [374]
Electrochemical
Secondary Batteries
Lead-acid0-20 [375]0.001–40 [376]min-days [377]s-h [378]70-90 [379]5~15 [380]2,000-4,500 [381]Mobile200-400 [382]50 [383]0.46 [384]Actual system proven in operational environment [385]50-90 [386]10-400 [387]
Li-Ion0-0.01 [388]0.004–10 [389]min-days [390]m-h [391]85-95 [392]5~15 [393]1,500-4,500 [394]Mobile600-3800 [395]8.6 [396]2.6 [397]Actual system proven in operational environment [398]200-500 [399]1500-10000 [400]
NaS0.05-8 [401]0.4–244.8 [402]s-h [403]s-h [404]75-90 [405]10~15 [406]2,500-4,500 [407]Mobile300-500 [408]80 [409]2.2 [410]Actual system proven in operational environment [411]150-300 [412]140-180 [413]
Flow Battery
Redox Flow0.03-3 [414]NAh-months [415]s-10h [416]65-85 [417]5~10 [418]10,000-13,000 [419]Mobile~582 [420]10.6 [421]1.1 [422]Actual system proven in operational environment [423]10-35 Wh/kg166W/kg
Hybrid FlowNANANANANANANAMobileNANANAActual system proven in operational environment
Electrical
Capacitor/Supercapacitor0-0.05 [424]0.0005 [425]s-h [426]ms-60m [427]60-65 [428]5~8 [429]50000 [430]Mobile300-2000 [431]6~13 [432]0-0.05 [433]Actual system proven in operational environment [434]2~30 [435]100000+ [436]
Super Magnetic Energy Storage (SMES)0.1-10 [437]0.0008-0.015 [438]min-h [439]ms-8s [440]95-98 [441]15~20 [442]>100,000 [443]Stationary500-72000 [444]18.5 [445]0.001 [446]Actual system proven in operational environment [447]0.2-2.5 [448]1000-4000 [449]
Thermochemical
Solar Fuels0-10 [450]NAh-months [451]1~24 [452]~20-30 [453]NANAStationaryNANANATechnology demonstrated in relevant environment [454]500-10,000NA
Chemical
Hydrogen Fuel Cell/Electrolyzer0.3-50 [455]0.312 [456]h-months [457]s-24h [458]33-42 [459]15-20 [460]20000 [461]Mobile~4.6 [462]31 [463]NASystem complete and qualified [464]500-3000 [465]500+ [466]
Thermal
Sensible/latent heat storage0.1–300 [467]NAmin-months [468]1-24h [469]~30-60 [470]5~20 [471]NAStationary20-60 [472]NANAActual system proven in operational environment [473]80-500NA