You are here

close

Citations

AGCI Interactive Energy Table

  1. Sum of hard coal, soft coal, and peat; data in 2014 [WEC, 2017a; WEC, 2013a; ]

  2. From 1139331 million tons of coal (proved reserves), equivalent to 9275293.671 TWh, latest data at the end of 2016 [BP, 2017]

  3. Data in 2015 [Statistia, 2018a]

  4. From 9,538,300 GWh, equivalent to 9538.3 TWh, data in 2015 [< http://www.iea.org/statistics/statisticssearch/report/?year=2014&country=WORLD&product=Coal">IEA, 2018c]

  5. From 3768.6 million TOE; data in 2017 [BP, 2018a]

  6. Data in 2017, for US. [EIA, 2018p]

  7. Data in 2016 [IEA, 2017b]

  8. Installed coal-fired generating capacity (GW) growth rate 0.2%, 2015-2050 [EIA, 2018c]

  9. Data in 2016, vary from technology [EIA, 2016a]

  10. Data in 2016, vary from technology [EIA, 2016a]

  11. Data in 2016, vary from technology [EIA, 2016a]

  12. Data in 2016, vary from technology [EIA, 2016a]

  13. Data in 2016, vary from technology [EIA, 2016a]

  14. Data in 2016, vary from technology [EIA, 2016a]

  15. Data in 2016 [Lazard, 2017]

  16. Data in 2016 [Lazard, 2017]

  17. From 102.6-180.4 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  18. From 102.6-180.4 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  19. From 65 USD/MWh in US, in 2017. [Statista, 2018c]

  20. From 17,713,376 million tons of hard coal resource; data in 2014. [WEC, 2017a]

  21. From 816214 million tons of hard coal (proved reserves), equivalent to 6644798.174 TWh; latest data at the end of 2016 [BP, 2017]

  22. From Sub-bituminous coal (649513kt), Lignite (539433kt), total to 1188946 kt (9679.21 TWh), electricity efficiency 0.33, equivalent to 3226 TWh in 2014 [EIA, 2018c]

  23. From 14,519,515TJ (Anthracite) + 33,733,135TJ (Metallurgical Coal) + 81,334,804TJ (Bituminous) = 129587454TJ, data in 2014 [EIA, 2018q]

  24. Data in 2016, by calculation; coking coal_steaming coal [IEA, 2017b]

  25. From 65-80 Euro(2013)/MWh, data in 2013; conversion factor 1EU = 1.33USD in 2013 [Fraunhofer ISE, 2013]

  26. From 65-80 Euro(2013)/MWh, data in 2013; conversion factor 1EU = 1.33USD in 2013 [Fraunhofer ISE, 2013]

  27. Projected to 2040 [Fraunhofer ISE, 2013]

  28. Projected to 2040 [Fraunhofer ISE, 2013]

  29. From 4,418,658 million tons of soft coal resource; data in 2014. [WEC, 2017a]

  30. From 323117 million tons of soft coal (proved reserves), equivalent to 2630495.497 TWh, latest data at the end of 2016 [BP, 2017]

  31. Subbituminous(25,082,899TJ)+Lignite(10,937,540TJ) = 36,020,439 TJ, equivalent to 10,006 TWh, data in 2014 [EIA, 2018c]

  32. From 25,082,899TJ(subbituminous) + 10,937,540TJ (lignite) = 36020439TJ, data in 2014. [EIA, 2018q]

  33. Data in 2016, by calculation; lignite [IEA, 2017b]

  34. From 38-52 Euro(2013)/MWh, data in 2013; conversion factor 1EU = 1.33USD in 2013 [Fraunhofer ISE, 2013]

  35. From 38-52 Euro(2013)/MWh, data in 2013; conversion factor 1EU = 1.33USD in 2013 [Fraunhofer ISE, 2013]

  36. From upper end of total peat in situ range of 6,000-13,800 billion m3. Conversion is referred to (Virtanen, 2012) that 23.7 billion m3 of energy peat reserve in situ contents energy 12 800 TWh. [WEC, 2013a; Kimmo Virtanen, 2012]

  37. From 0.3 trillion tons, conversion 20-23 MJ/kg peat. [Fuchsman, 2012; FAO, 1988]

  38. From 3535kt (28.78 TWh), electricity efficiency 0.33, equivalent to 9.6 TWh, data in 2014 [IEA, 2018c]

  39. From 15.2Mt, data in 2014. [IEA, 2014]

  40. Data in 2015, by calculation [IEA, 2017b]

  41. Sum of conventiol crude, tar sands, tight oil, and oil shale

  42. From 18.4 ZJ of oil (world proven)[Thakur, 2016]

  43. Data in 2013 [IEA, 2015b]

  44. Data in 2014 [IEA, 2016]

  45. From 4387.1 MTOE, data in 2017 [BP, 2018b]

  46. Data in 2017, for US; 13.0% for Steam Turbine, 2.0% for Combustion Turbine [EIA, 2018p]

  47. Data in 2016, by calculation [IEA, 2017c]

  48. Installed liquids-fired generating capacity (GW) growth rate -1.1%, 2015-2050 [EIA, 2018d]

  49. From 18.27 (2015$/MMBtu), data in 2015 [EIA, 2016b]

  50. From 18.27 (2015$/MMBtu), data in 2015 [EIA, 2016b]

  51. From 18.05-23.49$(2015)/MMBtu, data in 2015. [IEA, 2018o]

  52. From 18.05-23.49$(2015)/MMBtu, data in 2015. [IEA, 2018o]

  53. From 3.1 trillion barrels (including initial, proven and probable reserves), equivalent to 5,268,160 TWh. [IEA, 2013a]

  54. From 1706.7 thousand million barrels of conventiol crude (proved reserves); data in end of 2016. [BP, 2017]

  55. Latest data in 2015 [IEA, 2018b]

  56. From 95.24-96.83 mb/d, data in 2016 [IEA, 2018e]

  57. Data in 2016 [BP, 2017]

  58. Crude oil /a production growth rate 0.6%, 2015-2050 [EIA, 2018e]

  59. From $45-115/bbl, in 2014-2015 [EIA, 2015b]

  60. From $45-115/bbl, in 2014-2015 [EIA, 2015b]

  61. From $95/bbl (nomil $), projected to 2030 [EIA, 2007]

  62. It is estimated that over 2 trillion barrels (equilavlent to ~3,398,800 TWh) of oil reserves exist in the form of tar sands, although not all of these resources are economically or technically recoverable; data in 2015. [Robert Strauss Center, UT Austin, 2015]

  63. From ~600 billion barrels [Speight, 2016]

  64. From oil shale and oil sands 14,973 kt, data in 2014 [IEA, 2018c]

  65. From 635000 barrels per day (Venezuela+Madagascar+US), in 2015 [Tarsanworld, 2017]

  66. Production growth rate. From Over the 15-year period CAPP sees crude oil production rising by 1.1 million b/d from 3.852 million b/d in 2015 (actual) to 4.928 million b/d in 2030. Most of the growth will come from oilsands which will rise from 2.365 million b/d to 3.668 million b/d, an increase of about one-third; 2015-2030 [Statista, 2018b]

  67. From $60.52-75.73/bbl [Giacchetta, 2015b]

  68. From $60.52-75.73/bbl [Giacchetta, 2015b]

  69. From 418.9 billion barrels of tight oil (unproved technically recoverable), data updated in 2015 [EIA, 2015a]

  70. From 175 billion barrels of commercial recoverable tight oil, data in 2013 [OGJ, 2013]

  71. From 4.98 million barrels per day (b/d), data in 2015[EIA, 2017d]

  72. Production growth rate, 2.0 million b/d in 2012, 7.3 million b/d in 2030, by calculation. [EIA, 2017b]

  73. From $51/bbl [WorldOil, 2016]

  74. From $51/bbl [WorldOil, 2016]

  75. From 4,291 billion barrels [WEC, 2017b]

  76. From 345 billion barrels of technically recoverable shale oil resources [EIA, 2013b]

  77. From oil shale and oil sands 14,973 kt, data in 2014 [IEA, 2018c]

  78. From global production of kerogen oil lies at around 20 000 barrels per day (b/d) [ IEA, 2013]

  79. Data in 2015, by calculation [IEA, 2017]

  80. 2023-2030 [EIA, 2009]

  81. Sum of conventional gas and unconventional gas

  82. From 15.7ZJ of gas (world proved), equivalent to 4,361,111 TWh[Thakur, 2016]

  83. Data in 2016 [EIA, 2018a]

  84. Sum of conventional gas and shale gas

  85. From 3164.6 MTOE, data in 2017. [BP, 2018c]

  86. Data in 2017, for US; 54.8% for Combined Cycle, 9.4% for Combustion Turbine, 11.3% for Steam Turbine [EIA, 2018p]

  87. Data in 2016 [IEA, 2017d]

  88. Installed tural-gas-fired generating capacity (GW) growth rate 1.2%, 2015-2050 [EIA, 2018f]

  89. Data in 2016, vary from technology [EIA, 2016a]

  90. Data in 2016, vary from technology [EIA, 2016a]

  91. Data in 2016, vary from technology [EIA, 2016a]

  92. Data in 2016, vary from technology [EIA, 2016a]

  93. Data in 2016, vary from technology [EIA, 2016a]

  94. Data in 2016, vary from technology [EIA, 2016a]

  95. Data in 2016 [Lazard, 2017]

  96. Data in 2016 [Lazard, 2017]

  97. From 53.2-152.1 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  98. From 53.2-152.1 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  99. From 10,000 tcf. [Thakur & Rajput, 2011]

  100. From 6588.8 trilllion cubic feet of conventiol gas (proved reserves), data in end of 2016. [BP, 2017]

  101. Data in 2016 [EIA, 2018a]

  102. Data in 2015 [IEA, 2018c]

  103. From 138469424TJ, data in 2015 [IEA, 2018b]

  104. Data in 2015 [IEA, 2018a]

  105. Net tural-gas-fired electricity generation growth rate 2.2%, 2015-2050 [EIA, 2018g]

  106. Data in 2016, vary from technology [EIA, 2016a]

  107. Data in 2016, vary from technology [EIA, 2016a]

  108. Data in 2016 [Lazard, 2017]

  109. Data in 2016 [Lazard, 2017]

  110. From 53.2-152.1 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  111. From 53.2-152.1 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  112. From 52 USD/MWh in US, in 2017. [Statista, 2018c]

  113. From 16,110 tcf (456 tcm) [WEC, 2013b]

  114. From 7,576.6 trillion cubic feet of wet shale gas (unproved technically recoverable) [EIA, 2015]

  115. From 40 bcf/d, data in 2016 [Berman, 2016]

  116. From the United States(37bcf/d), Canada(4.1bcf/d), China(0.5bcf/d), and Argentina 18.93 TWh, data in 2015 [EIA, 2017a] [EIA, 2017e]

  117. Data in 2015, by calculation [EIA, 2017a]

  118. Tight gas, shale gas and coalbed methane production growth rate 3.6%, 2015-2050 [EIA, 2018h]

  119. [Gao & You, 2015]

  120. [Gao & You, 2015]

  121. From $5.06/MBtu [BP, 2015]

  122. From upper limit of 275-11,296 trillion cubic feet [Thakur, 2016 ]

  123. From ~30% of GIP (gas in place) [Thakur, 2016; FMI, 2018]

  124. From global CBM production was 2,920.3 Bcf in 2013 and is expected to reach 4,667.4 Bcf by 2020, growing at a CAGR of 7% from 2014 to 2020 [Prnewswire]

  125. Tight gas, shale gas and coalbed methane production growth rate 3.6%, 2015-2050 [EIA, 2018g]

  126. [Sarhosis et al., 2016]

  127. From 20,000 trillion cubic meters, or ~ 700,000 Tcf [NETL, 2011]

  128. From 6,700 Tcf [US DOE, 2011]

  129. From 834 bcm.[WOR, 2014]

  130. Tight gas, shale gas and coalbed methane production growth rate 3.6%, 2015-2050 [EIA, 2018g]

  131. From $4.70 to $8.60 per MBtu, projected to 2025 [Lester, 2016]

  132. From $4.70 to $8.60 per MBtu, projected to 2025 [Lester, 2016]

  133. Data in 2015 [IAEA, 2016]

  134. Data in 2016 [WNA, 2018]

  135. From 661,353 ktoe, data in 2014 [IEA, 2014]

  136. Data in 2017, for US. [EIA, 2018p]

  137. From consumption growth rate 1.3%, data in 2016 [BP, 2017]

  138. Installed nuclear generating capacity (GW) growth rate 1.2%, 2015-2050 [EIA, 2018i]

  139. Data in 2016 [EIA, 2016a]

  140. Data in 2016, vary from technology [EIA, 2016a]

  141. Data in 2016, vary from technology [EIA, 2016a]

  142. Data in 2016 [Lazard, 2017]

  143. Data in 2016 [Lazard, 2017]

  144. From 87.1-93.8 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  145. From 87.1-93.8 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  146. From 146 USD/MWh in US, in 2017. [Statista, 2018c]

  147. From 5,718,400 tonnes, data in 2015. A generic 1.0 GWe Light Water Reactor (LWR) producing 6.6 TWh per year requires about 150 tons of natural uranium. 5,718,400/150*6.6 = 2,516,000 TWh/yr [WNA, 2016a.]

  148. Data in 2016 [Lazard, 2017]

  149. Data in 2016 [Lazard, 2017]

  150. From 87.1-93.8 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  151. From 87.1-93.8 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  152. From 6,355,000 tonnes. [WNA, 2017a.] It is estimated that one ton of thorium can produce as much energy as 35 tons of uranium in a liquid fluoride thorium reactor. Thus, equivalent to 9,786,700 TWh/yr. [Ting, Jason. Thorium Energy Viability. 2015.]

  153. [Ramachandra & Shruthi, 2007]

  154. From upper range of 118-2592 EJ/yr [Moriarty & Honnery, 2012]

  155. Sum of PV, Low-temp thermal and high-temp thermal [REN 21, 2017]

  156. Data in 2015 [IRENA, 2018a]

  157. From (303+4.8+456)* Cap Factor av .22 * 8760/1000 = 1495TWh Data in 2016 [REN21 2017]

  158. Data in 2017 [IRE, 2018b]

  159. Data in 2015, by calculation [EIA, 2018b]

  160. Installed solar generating capacity (GW) growth rate 4.9%, 2015-2050 [EIA, 2018j]

  161. From 6,500 TW [Jacobson & Delucchi, 2011]

  162. 372,000-469,000 by 2050 [Edenhofer et al., 2011]

  163. Data in 2016 [REN 21, 2017]

  164. Data in 2015 [IRENA, 2018a]

  165. Data in 2015 [IRENA, 2018a]

  166. Data in 2017 [IRE, 2018b]

  167. Data in 2015 [REN 21, 2016]

  168. From 227GW in 2015, 780GW in 2030, by calculation [REN21, 2016; IRE, 2016]

  169. Global average installed cost, data in 2017 [IRE, 2018b]

  170. [EIA, 2016a]

  171. [EIA, 2016a]

  172. From 20-25% of LCOE; data in 2017 [IRE, 2018b]

  173. From 20-25% of LCOE; data in 2017 [IRE, 2018b]

  174. Data in 2016 [Lazard, 2017]

  175. Data in 2016 [Lazard, 2017]

  176. From 48.1-115.1 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  177. From 48.1-115.1 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  178. From 72 USD/MWh in US, in 2017. [Statista, 2018c]

  179. The theoretical potential of low temperature thermal far exceeds human energy demand. [Edenhofer et al., 2011]

  180. Data in 2016 [REN 21, 2017]

  181. Low-temp thermal and high-temp thermal; data in 2015 [IRENA, 2018a]

  182. Low-temp thermal and high-temp thermal; data in 2015 [IRENA, 2018a]

  183. Data in 2017, for US. [EIA, 2018p]

  184. Data in 2015 [REN 21, 2016]

  185. Data in 2016 [Lazard, 2017]

  186. Data in 2016 [Lazard, 2017]

  187. From 149.1-314.8 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  188. From 149.1-314.8 $(2016)/MWh, projected to 2040. [EIA, 2017c]

  189. From 4,600 TW [Jacobson & Delucchi, 2011]

  190. From upper range of 68,900-2,230,000 by 2050 [Edenhofer et al., 2011]

  191. Data in 2016 [REN 21, 2017]

  192. Low-temp thermal and high-temp thermal; data in 2015 [IRENA, 2018a]

  193. Low-temp thermal and high-temp thermal; data in 2015 [IRENA, 2018a]

  194. Data in 2017 [IRE, 2018b]

  195. Data in 2015 [REN 21, 2016]

  196. From 4.8GW in 2015, 44GW in 2030, by calculation [REN 21, 2016; IRE, 2016]

  197. Global average installed cost, data in 2017 [IRE, 2018b]

  198. From 0.02-0.03 USD/kWh for Parabolic Though Collector(PTC),0.03-0.04 USD/kWh for Solar Tower(ST); data in 2017 [IRE, 2018b]

  199. From 0.02-0.03 USD/kWh for Parabolic Though Collector(PTC),0.03-0.04 USD/kWh for Solar Tower(ST); data in 2017 [IRE, 2018b]

  200. Avg. 0.22 USD/kWh, in 2017 [IRE, 2018b]

  201. From 5800 EJ/yr [REN21, 2004]

  202. [Global CCS Institute, 2008]

  203. Data in end 2016 [GWEC, 2017]

  204. Data in 2015 [IRENA, 2017]

  205. From 825,779 GWh, data in 2016 [IRENA, 2017]

  206. Data in 2017, for US. [EIA, 2018p]

  207. Data in 2015 [REN 21, 2016]

  208. Installed wind-powered generating capacity (GW) growth rate 3.1%, 2015-2050 [EIA, 2018k]

  209. Data in 2016 [EIA, 2017c]

  210. Data in 2016 [EIA, 2017c]

  211. From 37.7-172.7 $(2016)/MWh,projected to 2040 [EIA, 2017c]

  212. From 37.7-172.7 $(2016)/MWh,projected to 2040 [EIA, 2017c]

  213. From 94.8953 TW [WWEA, 2014]

  214. From 13.6 TW [Zhou et al., 2012]

  215. Data in end 2016 [GWEC, 2017]

  216. Data in 2015 [IRENA, 2017]

  217. From 789,807 GWh, data in 2016 [IRENA, 2017]

  218. Data in 2017 [IRE, 2018b]

  219. Data in 2015, by calculation [IRE, 2017; IEA, 2015c]

  220. Production growth rate, projected to 2020 [EIA, 2015c]

  221. Global average installed cost, data in 2017 [IRE, 2018b]

  222. Data in 2017 [IRE, 2018b]

  223. Data in 2017 [IRE, 2018b]

  224. Data in 2017 [IRE, 2018b]

  225. Data in 2017 [IRE, 2018b]

  226. From 24-141 USD/MWh, avg. 56 USD/MWh, data in 2016 [IRE, 2018b]

  227. From 24-141 USD/MWh, avg. 56 USD/MWh, data in 2016 [IRE, 2018b]

  228. From 37.7-69.4 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  229. From 37.7-69.4 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  230. From 56 USD/MWh in US, in 2017. [Statista, 2018c]

  231. From ~61 TW [Makridis, 2013]

  232. [Ackermann et al., 2004.]

  233. Data in end 2016 [GWEC, 2017]

  234. Data in 2015 [IRENA, 2017]

  235. From 35,973 GWh, data in 2016 [IRENA, 2017]

  236. Data in 2017 [IRE, 2018b]

  237. Data in 2015, by calculation [IRE, 2017; IEA, 2015c]

  238. Production growth rate, projected to 2020 [EIA, 2015c]

  239. Global average installed cost, data in 2017 [IRE, 2018b]

  240. Data in 2017 [IRE, 2018b]

  241. Data in 2017 [IRE, 2018b]

  242. From 96-208 USD/MWh, avg. 123 USD/MWh, data in 2016[IRE, 2018b]

  243. From 96-208 USD/MWh, avg. 123 USD/MWh, data in 2016[IRE, 2018b]

  244. From 111.8-172.7 $(2016)/MWh, projected to 2040[EIA, 2017c]

  245. From 111.8-172.7 $(2016)/MWh, projected to 2040[EIA, 2017c]

  246. From 1,800 TW [Marvel et al., 2013]

  247. From 52 pWh/yr [Hoes et al., 2017]

  248. [WEC, 2017d]

  249. Data in 2016 [IRE, 2017]

  250. Data in 2016 [IRENA, 2017]

  251. From 3995,575 GWh, data in 2016 [IRENA, 2017]

  252. Data in 2017 [IRE, 2018b]

  253. Data in 2016, consumption growth rate [BP, 2017]

  254. Installed hydroelectric generating capacity (GW) growth rate 1.0%, 2015-2050 [EIA, 2018l]

  255. Global average installed cost, data in 2017 [IRE, 2018b]

  256. Data in 2017 [IRE, 2018b]

  257. Data in 2017 [IRE, 2018b]

  258. Data in 2017 [IRE, 2018b]

  259. From 18~246 USD/MWh, avg. 51 USD/MWh, data in 2016 [IRE, 2018b]

  260. From 18~246 USD/MWh, avg. 51 USD/MWh, data in 2016 [IRE, 2018b]

  261. From 55.3-69.7 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  262. From 55.3-69.7 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  263. [Johansson et al., 2004]

  264. From upper range of 1.8-33 EJ/yr [Moriarty & Honnery, 2012]

  265. Data in 2016 [IRE, 2017]

  266. Data in 2015 [IRENA, 2017]

  267. From 963 GWh, data in 2015 [IRENA, 2017]

  268. 1GW in 2015, 11GW in 2030, capacity growth rate 2015-2030 [Raventos et al., 2010.]

  269. [WEC, 2017c]

  270. [Krewitt et al., 2009]

  271. Wave and tidal energy [REN 21, 2016]

  272. From nearly 1TWh, data in 2017. [REN21, 2018]

  273. Data in 2016 [WEC, 2017c]

  274. Data in 2016 [WEC, 2017c]

  275. Data in 2016 [WEC, 2017c]

  276. Data in 2016 [WEC, 2017c]

  277. Data in 2016 [WEC, 2017c]

  278. Data in 2016 [WEC, 2017c]

  279. Data in 2016 [WEC, 2017c]

  280. From 148 EUR/MWh [IRE, 2014b]

  281. From 148 EUR/MWh [IRE, 2014b]

  282. [EY, 2013]

  283. From upper range of 30-90 pWh [WEC, 2017c]

  284. Not at a commercial scale

  285. Data in 2016 [WEC, 2017c]

  286. Data in 2016 [WEC, 2017c]

  287. Data in 2016 [WEC, 2017c]

  288. Data in 2016 [WEC, 2017c]

  289. Data in 2016 [WEC, 2017c]

  290. Data in 2016 [WEC, 2017c]

  291. Data in 2016 [WEC, 2017c]

  292. From 3.7 TW [Jacobson & Delucchi, 2011]

  293. From 500 kW [Zhou et al., 2014]

  294. From 1006GWh [IEA, 2018b]

  295. Data in 2016 [WEC, 2017c]

  296. Data in 2016 [WEC, 2017c]

  297. Data in 2016 [WEC, 2017c]

  298. Data in 2016 [WEC, 2017c]

  299. Data in 2016 [WEC, 2017c]

  300. Data in 2016 [WEC, 2017c]

  301. Data in 2016 [WEC, 2017c]

  302. From 75 £/MWh, projected to 2030 [Hundleby & Blanch, 2016]

  303. [IEA, 2017a]

  304. The total technical potential for salinity gradient power is estimated to be around 647 gigawatts (GW) globally, (compared to a global power capacity in 2011 of 5 456 GW), which is equivalent to 5,177 terawatt-hours (TWh), or 23% of electricity consumption in 2011. [IRE, 2014a]

  305. [EY, 2013]

  306. Not at a commercial scale

  307. From 45 TW [Jacobson & Delucchi, 2011]

  308. From upper range of 1.2-22 EJ/yr [Moriarty & Honnery, 2012]

  309. From 13.5 GW power and 23 GW direct use [REN21, 2017]

  310. Data in 2015 [REN21, 2017.]

  311. From 170TWh or 613 PJ, data in 2017. [REN21, 2018]

  312. Data in 2017 [IRE, 2018b]

  313. Data in 2015 [REN 21, 2016]

  314. Geothermal generating capacity (GW) growth rate 4.4%, 2015-2050 [EIA, 2018m]

  315. Global average installed cost, data in 2017 [IRE, 2018b]

  316. Data in 2017 [IRE, 2018b]

  317. Data in 2016 [Lazard, 2017]

  318. Data in 2016 [Lazard, 2017]

  319. From 35.3-78.1 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  320. From 35.3-78.1 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  321. From 2900 EJ/yr [EBIA]

  322. From upper range of 160–270 EJ/yr [Haberl et al., 2010]

  323. From 112 GW bio-power and 311 GW bio-heat [REN 21, 2017]

  324. Data in 2016 [REN21, 2017.]

  325. From 62.5 EJ, data in 2016 [REN21, 2017, p45]

  326. Data in 2017 [IRE, 2018b]

  327. Data in 2016 [REN 21, 2017; REN 21, 2016]

  328. Projected production growth rate 2017-2050; data in 2017. [EIA, 2018n]

  329. Global average installed cost, data in 2017 [IRE, 2018b]

  330. Data in 2017 [IRE, 2018b]

  331. Data in 2017 [IRE, 2018b]

  332. Data in 2017 [IRE, 2018b]

  333. Data in 2016 [Lazard, 2017]

  334. Data in 2016 [Lazard, 2017]

  335. From 55.3-69.7 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  336. From 55.3-69.7 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  337. Agricultural residues (10–66 EJ), forestry residues (3–35 EJ), forestry (60–230 EJ). Sum to 73 - 331 EJ, equivalent to 20,278 - 91,944 TWh [Slade et al., 2014]

  338. From 49 EJ/yr [Haberl et al., 2010]

  339. Data in 2015 [IEA, 2018d]

  340. Data in 2017, for US. [EIA, 2018p]

  341. Data in 2015 [IEA, 2018d]

  342. Projected production growth rate 2017-2050; data in 2017. [EIA, 2018n]

  343. [REN 21, 2013]

  344. [REN 21, 2013]

  345. Data in 2016 [Lazard, 2017]

  346. Data in 2016 [Lazard, 2017]

  347. From 73.2-114.5 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  348. From 73.2-114.5 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  349. From upper range of 12-120 EJ, equivalent to 3,333-33,333 TWh [Slade et al., 2014]

  350. From 11EJ/yr [Haberl et al., 2010]

  351. Data in 2015 [IEA, 2018]

  352. From 1351553TJ (municiple waste) + 797485TJ (industrial waste)[IEA, 2018a]

  353. Data in 2017, for US. [EIA, 2018p]

  354. Data in 2015 [IEA, 2018a]

  355. Projected production growth rate 2017-2050; data in 2017. [EIA, 2018n]

  356. Data in 2016 [Lazard, 2017]

  357. Data in 2016 [Lazard, 2017]

  358. From 73.2-114.5 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  359. From 73.2-114.5 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  360. From 22–1,272 EJ, equivalent to 6,111 TWh [Slade et al., 2014]

  361. From 40-110 EJ/yr, projected by 2050. Equivalent to 11,111 TWh - 30556 TWh. http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12141/pdf

  362. Data in 2016 [Lazard, 2017]

  363. Data in 2016 [Lazard, 2017]

  364. From 73.2-114.5 $(2016)/MWh, projected to 2040 [EIA, 2017c]

  365. From 73.2-114.5 $(2016)/MWh, projected to 2040 [EIA, 2017c]

Energy Storage Technologies

  1. [ Zakeri & Syri, 2015]

  2. [Luo et al. 2015]

  3. [ Zakeri & Syri, 2015]

  4. [ Zakeri & Syri, 2015]

  5. [ Zakeri & Syri, 2015]

  6. [ Zakeri & Syri, 2015]

  7. [ Zakeri & Syri, 2015]

  8. [Luo et al. 2015]

  9. [Luo et al. 2015]

  10. [Luo et al. 2015]

  11. [Nguyen et al., 2017]

  12. [Luo et al. 2015]

  13. [Luo et al. 2015]

  14. Underground CAES: 5-400 MW; aboveground CAES: 3-15 MW [ Zakeri & Syri, 2015]

  15. [Luo et al. 2015]

  16. [ Zakeri & Syri, 2015]

  17. [ Zakeri & Syri, 2015]

  18. [ Zakeri & Syri, 2015]

  19. [ Zakeri & Syri, 2015]

  20. [ Zakeri & Syri, 2015]

  21. [Luo et al. 2015]

  22. [Luo et al. 2015]

  23. [Luo et al. 2015]

  24. [Nguyen et al., 2017]

  25. [Luo et al. 2015]

  26. [Luo et al. 2015]

  27. [ Zakeri & Syri, 2015]

  28. [Luo et al. 2015]

  29. [ Zakeri & Syri, 2015]

  30. [ Zakeri & Syri, 2015]

  31. [ Zakeri & Syri, 2015]

  32. [ Zakeri & Syri, 2015]

  33. [ Zakeri & Syri, 2015]

  34. [Luo et al. 2015]

  35. [Luo et al. 2015]

  36. [Luo et al. 2015]

  37. [Nguyen et al., 2017]

  38. [Luo et al. 2015]

  39. [Luo et al. 2015]

  40. [ Zakeri & Syri, 2015]

  41. [Luo et al. 2015]

  42. [ Zakeri & Syri, 2015]

  43. [ Zakeri & Syri, 2015]

  44. [ Zakeri & Syri, 2015]

  45. [ Zakeri & Syri, 2015]

  46. [ Zakeri & Syri, 2015]

  47. [Luo et al. 2015]

  48. [Luo et al. 2015]

  49. [ Zakeri & Syri, 2015]

  50. [Nguyen et al., 2017]

  51. [Luo et al. 2015]

  52. [Luo et al. 2015]

  53. [ Zakeri & Syri, 2015]

  54. [Luo et al. 2015]

  55. [ Zakeri & Syri, 2015]

  56. [ Zakeri & Syri, 2015]

  57. [ Zakeri & Syri, 2015]

  58. [ Zakeri & Syri, 2015]

  59. [ Zakeri & Syri, 2015]

  60. [Luo et al. 2015]

  61. [ Zakeri & Syri, 2015]

  62. [ Zakeri & Syri, 2015]

  63. [Nguyen et al., 2017]

  64. [Luo et al. 2015]

  65. [Luo et al. 2015]

  66. [ Zakeri & Syri, 2015]

  67. [Luo et al. 2015]

  68. [ Zakeri & Syri, 2015]

  69. [ Zakeri & Syri, 2015]

  70. [ Zakeri & Syri, 2015]

  71. [ Zakeri & Syri, 2015]

  72. [ Zakeri & Syri, 2015]

  73. [Luo et al. 2015]

  74. [ Zakeri & Syri, 2015]

  75. [ Zakeri & Syri, 2015]

  76. [Nguyen et al., 2017]

  77. [Luo et al. 2015]

  78. [Luo et al. 2015]

  79. [ Zakeri & Syri, 2015]

  80. [ Zakeri & Syri, 2015]

  81. [ Zakeri & Syri, 2015]

  82. [ Zakeri & Syri, 2015]

  83. [ Zakeri & Syri, 2015]

  84. [ Zakeri & Syri, 2015]

  85. [ Zakeri & Syri, 2015]

  86. [ Zakeri & Syri, 2015]

  87. [ Zakeri & Syri, 2015]

  88. [Nguyen et al., 2017]

  89. [ Zakeri & Syri, 2015]

  90. [Luo et al. 2015]

  91. [ Zakeri & Syri, 2015]

  92. [ Zakeri & Syri, 2015]

  93. [ Zakeri & Syri, 2015]

  94. [ Zakeri & Syri, 2015]

  95. [ Zakeri & Syri, 2015]

  96. [Luo et al. 2015]

  97. [Luo et al. 2015]

  98. [Luo et al. 2015]

  99. [Nguyen et al., 2017]

  100. [Luo et al. 2015]

  101. [Luo et al. 2015]

  102. [ Zakeri & Syri, 2015]

  103. [Luo et al. 2015]

  104. [ Zakeri & Syri, 2015]

  105. [ Zakeri & Syri, 2015]

  106. [ Zakeri & Syri, 2015]

  107. [ Zakeri & Syri, 2015]

  108. [ Zakeri & Syri, 2015]

  109. [Luo et al. 2015]

  110. [Luo et al. 2015]

  111. [Luo et al. 2015]

  112. [Nguyen et al., 2017]

  113. [Luo et al. 2015]

  114. [Luo et al. 2015]

  115. [Luo et al. 2015]

  116. [Luo et al. 2015]

  117. [Luo et al. 2015]

  118. [Luo et al. 2015]

  119. [Nguyen et al., 2017]

  120. [ Zakeri & Syri, 2015]

  121. [Luo et al. 2015]

  122. [ Zakeri & Syri, 2015]

  123. [ Zakeri & Syri, 2015]

  124. [ Zakeri & Syri, 2015]

  125. [ Zakeri & Syri, 2015]

  126. [ Zakeri & Syri, 2015]

  127. [ Zakeri & Syri, 2015]

  128. [ Zakeri & Syri, 2015]

  129. [Nguyen et al., 2017]

  130. [Luo et al. 2015]

  131. [Luo et al. 2015]

  132. [Luo et al. 2015]

  133. [Luo et al. 2015]

  134. [Luo et al. 2015]

  135. [Luo et al. 2015]

  136. [Luo et al. 2015]

  137. [Luo et al. 2015]

  138. [Nguyen et al., 2017]

close
 availabilityinstalled scalegrowthcost
Capital Costs (USD/kW)Fixed O&M Costs (USD/kW-yr)Variable O&M Costs (USD/MWh)Levelized Costs (USD/MWh)Projected Costs (USD/MWh)
Energy SourceResource (TWh)Resource (TWh/yr)Reserve (TWh)Reserve (TWh/yr)Installed Capacity (GW)Production (TWh)Total Primary Energy Supply (TWh)Capacity Factor (%)Current Rates (%)Projected Rates (%)minmaxminmaxminmaxminmaxminmaxLifetime Costs (USD/MWh)
Totals840,826,91841,852,28610,06253,077163,181
 Coal  187,630,100 [1]9,275,294 [2]1,646 [3]9,538 [4]43,829 [5]53.3 [6]-5.93 [7]0.2 [8]226 [9]4,620 [10]22 [11]70 [12]5 [13]7.1 [14]60 [15]143 [16]102.6 [17]180.4 [18]65 [19]
Hard144,204,600 [20]6,644,798 [21]8,871 [22]35,997 [23]-6.28 [24]86.45 [25]106.4 [26]45.1 [27] [28]
Soft35,972,300 [29]2,630,495 [30]3,226 [31]10,006 [32]-3.43 [33]50.54 [34]69.16 [35]
Peat7,453,200 [36]1,917,000 [37]10 [38]93 [39]-33.55 [40]
 Oil  16,670,994 [41]5,111,111 [42]452 [43]1,023 [44]51,022 [45]13.0, 2.0 [46]0.11 [47]-1.1 [48]62.3 [49] [50]61.54 [51]80.09 [52]
Conventional Crude5,268,160 [53]2,900,377 [54]990 [55]43,851 [56]0.5 [57]0.6 [58]27.6 [59]70.6 [60]58.3 [61]
Tar sands3,398,800 [62]1,020,000 [63]122 [64]1,704 [65]2.97 [66]37.17 [67]46.51 [68]
Tight oil711,881 [69]297,396 [70]2,960 [71]9.015 [72]31.3 [73] [74]
Oil shale7,292,153 [75]586,500 [76] [77]119 [78]-6.5 [79]35 [80]
 Gas  216,112,365 [81]4,361,111 [82]1,682 [83]9,822 [84]36,804 [85]54.8, 9.4,11.3 [86]0.8 [87]1.2 [88]678 [89]1,342 [90]6.8 [91]17.5 [92]2 [93]10.7 [94]42 [95]210 [96]53.2 [97]152.1 [98]
Conventional Gas2,930,711 [99]1,930,987 [100]1,682 [101]5,543 [102]37,851 [103]2.202 [104]2.2 [105]678 [106]1,342 [107]42 [108]78 [109]53.2 [110]152.1 [111]52 [112]
Shale gas4,721,374 [113]2,220,482 [114]4,279 [115]4,469 [116]54.13 [117]3.6 [118]69 [119]91 [120]17.3 [121]
Coalbed methane3,310,531 [122]993,159 [123]856 [124]3.6 [125]46 [126]
Methane hydrates205,149,749 [127]1,963,576 [128]8,632 [129]3.6 [130]16 [131]29.3 [132]
 Nuclear  383 [133]2,476 [134]7,691 [135]92.2 [136]1.3 [137]1 [138]5,945 [139]100.28 [140]2.3 [141]112 [142]183 [143]87.1 [144]93.8 [145]146 [146]
Uranium fission2,516,000 [147]NA112 [148]183 [149]87.1 [150]93.8 [151]
Thorium fission9,786,700 [152]NA
 Solar  1,500,000,000 [153]720,000 [154]763.8 [155]253.6 [156]1,495 [157]18-34 [158]20.7 [159]4.9 [160]Vary from technologyVary from technologyVary from technologyVary from technologyVary from technology
Photovoltaic (PV)56,940,000 [161]469,000 [162]303 [163]243.6 [164]244 [165]18 [166]28 [167]9 [168]1,388 [169]21.8 [170]23.9 [171]20 [172]25 [173]43 [174]319 [175]48.1 [176]115.1 [177]72 [178]
Low-temp thermal [179]456 [180]9.6 [181]10 [182]21.8 [183]6 [184]98 [185]181 [186]155.4 [187]340.6 [188]
High-temp thermal40,296,000 [189]2,230,000 [190]4.8 [191] [192]8 [193]34 [194]9.7 [195]16 [196]5,564 [197]20 [198]40 [199]220 [200]
 Wind  1,611,111 [201]278,000 [202]486.7 [203]826 [204]826 [205]36.7 [206]17 [207]3.1 [208]Vary from technologyVary from technologyVary from technology65 [209]250 [210]37.7 [211]172.7 [212]
Onshore831,324 [213]119,500.0 [214]472.3 [215]790 [216]790 [217]30 [218]16.67 [219]12 [220]1,477 [221]41 [222]76 [223]0.02 [224]0.03 [225]24 [226]141 [227]37.7 [228]69.4 [229]56 [230]
Offshore534,360 [231]36,999.0 [232]14.4 [233]36.0 [234]36 [235]39 [236]43.88 [237]24 [238]4,239 [239]20 [240]60 [241]96 [242]208 [243]111.8 [244]172.7 [245]
High-altitude15,768,000 [246]NA
 Hydro52,000 [247]10,000 [248]1,246 [249]3,996 [250]3,996 [251]48 [252]2.8 [253]1 [254]1,535 [255]15 [256]60 [257]0.003 [258]18 [259]246 [260]55.3 [261]69.7 [262]
 Ocean  2,040,000 [263]9,200 [264]0.536 [265]1.0 [266]1 [267]22.4 [268]Vary from technologyVary from technologyVary from technologyVary from technology
Wave32,000 [269]5,555 [270]1.0 [271]1 [272]30-35 [273]NA3,600 [274]15,300 [275]100 [276]500 [277]210 [278]679 [279]165 [280]198 [281]
Thermal conversion44,000 [282]90,000 [283]Not at a commercial scale [284]Not at a commercial scale97 [285]NA15,000 [286]30,000 [287]480 [288]950 [289]350 [290]650 [291]
Tidal/currents32,412 [292]0.0005 [293]1.0 [294]Not at a commercial scale35-42 [295]NA4,300 [296]8,700 [297]150 [298]530 [299]210 [300]470 [301]94 [302]
Salinity gradients2,000 [303]5,177 [304]0.014 [305]Not at a commercial scale [306]Not at a commercial scaleNANot at a commercial level
 Geothermal394,200 [307]6,000 [308]36.5 [309]78.0 [310]157 [311]79 [312]2.4 [313]4 [314]2,959 [315]110 [316]77 [317]117 [318]36.6 [319]85 [320]
 Biomass  805,556 [321]75,000 [322]433 [323]504 [324]17,361 [325]86 [326]8.62 [327]1 [328]2,668 [329]53 [330]160 [331]0.005 [332]55 [333]114 [334]73.2 [335]114.5 [336]
Wood and residues91,944 [337]13,611 [338]344 [339]NA50.7 [340]6.79 [341]1 [342]200 [343]5,500 [344]55 [345]114 [346]73.2 [347]114.5 [348]
Waste33,333 [349]3,055 [350]94.2 [351]597 [352]70.9 [353]0.23 [354]1 [355]55 [356]114 [357]73.2 [358]114.5 [359]
Energy crops6,111 [360] [361]55 [362]114 [363]73.2 [364]114.5 [365]
 powercapacitydurationefficiencylifetimemobilitycostdensity
Storage TypePower Rating/Rated Power (MW, range)Rated Energy Capacity (MWh, range)Storage DurationDischarge/cycle durationCycle/Roundtrip Efficiency (%, range)Lifetime (yrs)Lifetime (cycles)Mobile vs. StationaryCapital Cost ($/kWh)Fixed Operation + Maintenance ($/kW-yr)Variable Operation + Maintenance ($/kWh)Technical MaturityEnergy Density (Wh/L)Power Density (W/L)
Mechanical
Pumped Hydro10~5000 [366]500-8000 [367]h-months [368]1-24h [369]70-82 [370]50-60 [371]20,000-50,000 [372]Stationary5-100 [373]3 [374]0.004 [375]Actual system proven in operational environment [376]0.5-1.5 [377]0.5-1.5 [378]
Compressed Air (CAES)3-400 [379]0-1000; 0.002-0.01 [380]h-months [381]1-24h [382]70-90 [383]20-40 [384]>13,000 [385]Stationary2-250 [386]19-25 [387]0.003 [388]system complete and qualifie [389]3~6 [390]0.5-2 [391]
Flywheel0-0.25 [392]0.0052-5 [393]s-min [394]ms-15m [395]93-95 [396]15-20 [397]>13,000 [398]Staionary1000-14000 [399]20 [400]0.004 [401]Actual system proven in operational environment [402]20-80 [403]1000-2000 [404]
Electrochemical
Secondary Batteries
Lead-acid0-20 [405]0.001–40 [406]min-days [407]s-h [408]70-90 [409]5~15 [410]2,000-4,500 [411]Mobile200-400 [412]50 [413]0.46 [414]Actual system proven in operational environment [415]50-90 [416]10-400 [417]
Li-Ion0-0.01 [418]0.004–10 [419]min-days [420]m-h [421]85-95 [422]5~15 [423]1,500-4,500 [424]Mobile600-3800 [425]8.6 [426]2.6 [427]Actual system proven in operational environment [428]200-500 [429]1500-10000 [430]
NaS0.05-8 [431]0.4–244.8 [432]s-h [433]s-h [434]75-90 [435]10~15 [436]2,500-4,500 [437]Mobile300-500 [438]80 [439]2.2 [440]Actual system proven in operational environment [441]150-300 [442]140-180 [443]
Flow Battery
Redox Flow0.03-3 [444]NAh-months [445]s-10h [446]65-85 [447]5~10 [448]10,000-13,000 [449]Mobile~582 [450]10.6 [451]1.1 [452]Actual system proven in operational environment [453]10-35 Wh/kg166W/kg
Hybrid FlowNANANANANANANAMobileNANANAActual system proven in operational environment
Electrical
Capacitor/Supercapacitor0-0.05 [454]0.0005 [455]s-h [456]ms-60m [457]60-65 [458]5~8 [459]50000 [460]Mobile300-2000 [461]6~13 [462]0-0.05 [463]Actual system proven in operational environment [464]2~30 [465]100000+ [466]
Super Magnetic Energy Storage (SMES)0.1-10 [467]0.0008-0.015 [468]min-h [469]ms-8s [470]95-98 [471]15~20 [472]>100,000 [473]Stationary500-72000 [474]18.5 [475]0.001 [476]Actual system proven in operational environment [477]0.2-2.5 [478]1000-4000 [479]
Thermochemical
Solar Fuels0-10 [480]NAh-months [481]1~24 [482]~20-30 [483]NANAStationaryNANANATechnology demonstrated in relevant environment [484]500-10,000NA
Chemical
Hydrogen Fuel Cell/Electrolyzer0.3-50 [485]0.312 [486]h-months [487]s-24h [488]33-42 [489]15-20 [490]20000 [491]Mobile~4.6 [492]31 [493]NASystem complete and qualified [494]500-3000 [495]500+ [496]
Thermal
Sensible/latent heat storage0.1–300 [497]NAmin-months [498]1-24h [499]~30-60 [500]5~20 [501]NAStationary20-60 [502]NANAActual system proven in operational environment [503]80-500NA