The snow depth in Eurasia is increasing in most areas, and decreasing in the west only.

Mean February observed snow depth in Eurasia in 1951-80 (cm, top), and its change in 1989-2001 as compared to 1951-80 (cm, bottom).
Mean annual air temperature, averaged over Russia (anomalies from 1961-1990 mean). The horizontal lines indicate mean values for 1951-80 and 1989-2001; the dotted lines show 99% confidence levels. The two periods differ statistically by about 1°C. The mean annual temperatures are from Gruza et al. (2002).
Mean snow density (kg/m$^3*10^{-2}$) (upper panel) and its anomalies (lower panel) during the warmest period 1989-2000 (%) in relation to coldest 1966-1977

Distribution of average snow density demonstrates its dependence on a) winter melting frequency, and b) wind velocity and heavy precipitation (the latter two being typical for intensive cyclonic activity). The same factors are responsible for the change of snow density under contemporary winter warming.
The large river basins: Volga (1), Northern Dvina (2), Ob (3), Yenisey (4), Lena (5), and the borders between regions, homogeneous by interannual variations of the snow depth (dashed lines).
All of the river basins belong to several (from 2 to 4) regions, which makes the runoff dependence on snow depth rather complicated and non-linear.
From Popova (2004).
Pattern (upper panel) and time series (lower panel) of February snow depth first Principal Component: observed (1) and calculated with relationships to atmospheric circulation indices (2, 3). From Popova V.V. (Int. Journal of Climatology, 2007).

The snow depth is mostly dependent on NAO and Scandinavian circulation indices, with leading role passing from one to another in different decades.